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Slope stability analysis application of a static discrete element method 
Application d’une méthode statique d’éléments discrets pour l’analyse de la stabilité de pentes
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SYNOPSIS: This paper presents a static discrete elements method for stability analysis o f slopes. The slope is discretized into a series o f 

blocks and the equilibrium of the individual blocs as well as the displacement compatibility between blocks are satisfied. The usual 
assumptions on interslice force distribution and constant factor of safety made in traditional methods of slices are not used. The method is 

also not constrained by the evaluation of stability along a predetermined critical surface. The failure surface is determined from the 

displacement field for the slope. However, a factor of safety can be obtained if the method is applied to a predetermined failure surface. The 

method is evaluated in the analysis o f two slides in overconsolidated clay in which progressive failure was a large factor.

1 INTRODUCTION

The assessment o f the stability o f natural and man-made earth 

slopes constitutes one o f the most frequent problems encountered 

by geotechnical engineers. Safety may be assured by providing 

for qualitative aspects o f the design (choice o f materials, drainage, 
geometry, timing of construction), and by the use of an 

appropriate method of analysis. All but a few of the methods 

which have traditionally been used to analyze slope stability are 

based on the principle of limit equilibrium i.e., equilibrium 

conditions at the point o f incipient failure. The strength of limit 
equilibrium methods (LEMs) is their simplicity. The value of a 

global safety factor based on the limit state is used to determine 

whether a slope is stable or not. These methods, however, are 

developed within a restricted framework: i) slip surfaces must be 

predetermined, and ii) effects o f initial state o f stress and 

stress/strain history, soil stress-strain relations, stress/strain paths 

to failure, and differing constraints on boundary displacements are 

not considered in modeling the potential range in distribution of 

interslice forces.
Apart from a safety factor it is often desirable to have some 

information about the development of failure (should it occur). 
Instrumentation can then be suitably placed to give prior warning 

of the onset of a dangerous situation. LEMs are not capable o f the 

determination of failure initiation and likely collapse mechanism. 
The finite element method (FEM) is useful to examine the effects 

of the above factors, and is also capable o f showing the initiation 

of failure.
Recent research efforts have focused on describing the 

behavior of a soil mass using discrete elements (e.g. Cundall 
1971; Walton 1992). This paper presents a discrete block method 

for the computation of slope stability. The slope is discretized 

into a number o f discrete blocks rather than slices. The usual 
assumptions on interslice force distributions and a constant factor 

of safety used in LEMs are replaced with equations of equilibrium 

and compatibility for individual blocks. The solution algorithm 

uses the static equilibrium of the discretized blocks rather than the 

dynamic one used by most current discrete element models. The 

technique is an extension of a previous study by Chang (1992) and 

includes a more realistic representation of the soil interface 

behavior. The failure surface results from the analysis in the new 

technique. It need not be input at the beginning o f the analysis as 

in Chang (1992). The method is capable of taking into account 
important factors relating to the progressive nature o f slope 

failures.

The formulation o f the proposed technique is summarized 

herein. The technique is illustrated for two case studies and the 

results are compared with analysis in the literature. The capability 

of the method to model progressive failure of slopes is 

highlighted.

2 INTERFACE BEHAVIOR

A detailed description of the technique is presented elsewhere 

(Rodriguez-Marek 1996, Rodriguez-Marek et al. 1996), and a 

summary is presented herein. The slope is discretized into a series 

o f blocks joined together by Winkler springs. The Winkler 

springs simulate the load-deformation behavior of the soil. The 

springs have normal and shear stiffness given by k„ and ks 
respectively. The normal and shear springs have elasto-plastic 

characteristics. The normal springs do not yield in compression, 
but they do in tension, beyond the tensile capacity of the soil. The 

“tension cutoff” is provided for cohesive soils but not for 

cohesionless soils. After reaching the tension cut-off, the normal 
soil resistance is assumed to drop immediately to zero (Figure la). 
The shear springs yield when the shear strength is reached. For 

plastic soils, the peak strength is governed by the Mohr-Coulomb 

criterion:

t p = c'p + <*„ tan«|» p (2.1)

where t p is the peak strength, c p is the effective peak cohesion, a n 
is the effective normal stress, and f p is the effective peak friction 

angle. Beyond the peak strength, the strength parameters c pand <(ip 
of plastic strain softening soils are reduced to their residual values 

c, and <]>r respectively, in Equation 2.1. The interface shear 

behavior of the soil is shown in Figure lb. Notice that the 

residual strength is achieved at large deformations.

3 MECHANICS OF DISCRETE BLOCKS

The equilibrium and compatibility equations are derived for two 

interactive blocks A and B (Figure 2). Let P be the midpoint of 

the interface between these two blocks. Let rip be a vector 

pointing from the centroid o f block i to the point P. Let ua and ub 
be vectors representing centroid displacements o f blocks A and B. 
These vectors include the block displacements in global x and y 

directions (u* and Uy), and the block rotation (u j . The
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Block A Block B

T ension  C u to ff

a) normal Winkler spring b) shear Winkler spring

Figure 1. Behavior of normal and shear Winkler springs (stress vs. 
Displacement). (From Rodriguez-Marek et al. 1996).

displacement of block B relative to block A, at point P, Ap, is 
(Chang 1992):

A’ 'l 0 _ rybp" U‘ l
'i 0 - r;p"

* Py • = 0 1 r,bp “ Ì • - 0 1 C “Î (3.1)

0 0 1 0 0 1 u“

The relative movements o f the two interacting blocks at any 

point P' on the interface result in spring displacements in the 

normal direction, 8„, and in the shear direction, 8S, given by:

8 n = Ap +A P„ I 

8. = A1

(3.2a)

(3.2b)

where / is the distance from the center point P to point P', and 

displacements Ap are expressed in a local coordinate system, 
where subscripts n and s indicate normal and shear movement, 
respectively, and subscript to indicates rotation.

The spring displacements, in turn, generate normal and shear 

stresses on the block interface as shown in Figure 2. Integration 

of these stresses over the interface length result in the following 

relationships between the resultant forces and moments at point P 

and the displacements and rotations at the same point (Chang 

1992, Rodriguez-Marek 1996):

f : X 0 0 ' a :

f ; 0 K, 0 AÏ (3.3a)

M p 0 0 K

UH* (3.3b)

where K, = k„ L, K, = k, L, K„ = (k„ L3)/12, F is the interface force- 
moment vector (Figure 2), K ,^  is the local stiffness matrix, and 

Ap is the displacement vector of point P in local coordinates.
Using coordinate transformations on the local stiffness 

matrices, and enforcing equilibrium among all the forces acting at 
the block boundaries, and external forces acting at the centroids of 

the block, results in the following equation:

(«•)-!

-1 0 0

0 -1  0

y
_ r»p -1

(3.4)

a) displacements and boundary stresses

b) equivalent forces and moments

Figure 2. Block displacements, stresses, and equivalent forces. 
(From Rodriguez-Marek et al. 1996)

where N is the total number of sides o f the block, f  is the force- 
moment vector corresponding to the forces applied at the centroid 

of block A, and K is the local stiffness matrix in global 
coordinates. The above equation gives a relationship between the 
forces applied at the centroid of block A, and the displacements of 
the centroids adjacent to block A. The displacements of point P, 
Ap, in terms of the displacements of the centroids in the global 
coordinate system are given by Equation 3.1. Use o f Equation 3.4 

for each block, and application of displacement compatibility, 
results in a relationship o f the form:

(3.5)

where 1C is a symmetric banded stiffness matrix relating centroid 

displacements to the forces applied to the centroid, f  is the vector 

of applied forces at the centroid of all blocks, and u is the vector 

of displacements o f all blocks. In general cases, the force vector f 
consists only of a vertical gravity load, but may include any other 

externally applied loads, such as the overburden and seepage 

forces. The solution of Equation 3.5 is obtained with appropriate 

displacement boundary conditions.
Once displacements are found, they are used to find forces 

acting along the block interfaces. The average stress acting on 

each interface is found by dividing the force over the block length. 
These stresses are compared with the shear strength of each 

interface. For boundaries that have yielded, the displacement 8S 
(Equation 3.2b) is used to find a new secant stiffness (ks). The use 
of a secant stiffness avoids problems originating from the negative 

modulus during the transition from peak to residual strength (Lo 

and Lee 1977). Since no interaction is possible in the case of 
tension cracks, the normal and shear stiffness are switched to zero. 
The solution algorithm for the method and a discussion on its 
implementation is presented elsewhere (Rodriguez-Marek 1996, 
Rodriguez-Marek et al. 1996).

4 CASE STUDIES 

4.1 Selset, England

To illustrate the proposed method, a landslide in Selset, England 

(Skempton and Brown 1961), is analyzed. The slope is 12.8 m 

high with an inclination o f 28°. Peak soil strength parameters are
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c = 8.6 kPa, (j) p = 32°. Residual strength parameters are taken as 
§ = <|) r and c r = 0. Unit weight o f the soil is 21.8 kN/m3. A pore 

pressure ratio of 0.45 was used in the analysis. The LEM analysis 

of the slope using XSTABL (Sharma 1994) with peak strength 

parameters yielded a minimum factor of safety of 1.02. This 

value was based on the Morgenstem and Price method (1965). 
The critical surface was obtained using random surface generation 

available in XSTABL (Sharma 1994). The failure surface is 

shown in Figure 3.
The contour plot o f the horizontal displacement at the onset of 

failure, based on the proposed technique, is also shown in Figure
3. The failure surface is observed in this figure as a narrow region 

of displacement discontinuity. This region is in close agreement 
with the failure surface obtained in the LEM analysis (Figure 3). 
A pattern of displacements also appear away from the slope at the 

right side of the region analyzed. These displacements, however, 
are two orders of magnitude smaller than the displacements within 

the failure mass and are negligible. These displacements are 

artifacts o f the numerical method and boundary conditions.
A direct measure o f the stability o f the slope is sometimes 

desired. For this purpose, the proposed method is applied to a 

typical slice geometry using a predetermined failure surface. 
Local factors o f safety are defined by the ratio o f available to 

mobilized strength along the base of each slice. Similarly, a 

global factor o f safety is determined to give a measure o f safety 

for the whole slope. This results in an improved stability analysis 

without the simplifying assumptions of conventional limit 
equilibrium (Chang 1992). The propagation of the failure surface 

can be observed by obtaining local factors o f safety along the 

failure surface in Figure 3 (Figure 4). Localized failure occurs in 

the crest o f the slope and propagates along the failure surface. 
Furthermore, the analysis reproduced the tension cracks in the 

crest observed by Skempton and Brown (1961).

Figure 3. Contour plot o f horizontal displacements for Selset 
slope (from Rodriguez Marek et al. 1996).

Slice number

Figure 4. Factors o f safety for various iterations. Peak strength 

parameters. Note that FS = 0 for the final iteration on slice 19. 
This is an indication of tension cracking (From Rodriguez-Marek
1996).

The method was also applied to a slope in stiff fissured London 

Blue Clay in Sudbury Hill, England. Soil parameters and slope 

geometry are obtained from Law and Lumb (1978). The slope is
7.0 m high with an inclination of 18.4°. The peak soil strength 

parameters are c p = 12.0 kPa, <jip = 20°. Failure was triggered by 

regrading of the slope. Initial shear failure on the 

overconsolidated clay resulted in negative pore pressures. The 

dissipation of pore pressures caused a reduction of strength 

leading to a zero effective cohesion. Accordingly, the residual 
strength parameters are taken as <)>r = <|>p and cr = 0. The unit 
weight of the soil is 18.8 kN/m3.

The discrete element method analysis resulted in complete 

failure. The displacement field is shown in Figure 5. The 

predicted failure surface can be seen as a narrow region of 

displacement discontinuity. This predicted failure surface 

matches the observed failure surface (Law and Lumb 1978). A 

parametric study of the slope showed the failure surface to be 

sensitive to the location o f the level o f the water table.
A region of displacement discontinuity is observed below the 

slope and away from the failure mass. As in the previous 

example, this is an artifact o f the mesh geometry and boundary 

conditions. Displacements in this region are an order of 

magnitude smaller than in the failure mass and can be considered 

negligible.

5 CONCLUSION

This paper presented a static discrete element method for stability 

analysis o f slopes. The slope is discretized into blocks and the 

solution for their displacements is obtained by solving the 

equilibrium and displacement compatibility equations. The 

displacement field o f the proposed method can be used to identify 

the initiation of failure surface. Therefore, the solution is not 
constrained by the evaluation of stability along a predetermined 

critical surface, nor by any assumptions regarding force 

distribution on block boundaries.
The presence o f rigid blocks in the analysis model limits lateral 

stress transfer. This results in lower strength for vertical 
boundaries (Rodriguez-Marek 1996). This, however, does not 
seem to affect blocks in the failure regions for relatively shallow 

slides. Results have also shown a large degree o f mesh 

dependency in the shape o f the failure surface.
The method is effective in determining the progressive nature 

of slope failure in plastic and brittle soils. Furthermore, the 

application of the method to a slice geometry results in an 

improved limit equilibrium analysis that accounts for the elasto-

4.2 Sudbury Hill, England.
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Figure 5. Contour plot o f horizontal displacements for Sudbury 

Hill slope. Darker colors correspond to larger displacements.

1221



plastic behavior of soil. The method is simple and the boundary 

conditions are easily input without the time constraints associated 

with finite element methods. The resulting displacement field can 

be useful in developing design guidelines for stabilizing 

techniques.
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