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SYNOPSIS: The principle of Natural Proportionality is applied to

describe the strain-time relationship (creep)

in

find simple general equations to
the stable and in the unstable zones of the

triaxial tests in soils. A general strength-time equation and a general Ko - time relationship are

also given.

triaxial tests already published in the literature.

INTRODUCTION

The principle of Natural Proportionality has been enunciated
and applied to various physical phenomena (Juarez-Badiilo,
1981, 1985a,b, 1990). This principle simply states that all
physical phenomena are ordered and simple. The main problem is
to find the proper variables from which the proper functions
are defined and related through the proper non linear natural
proportionality. This process is applied in this paper to
obtain a general equation that relates deviatoric deformations
to time (creep) in soils. The proper variable used to describe

deviatoric deformation is the natural general shear
deformation (Juirez-Badillo, 1974). Let X, (vertical), X, and
X4 be the Cartesian coordinate system and let us consider the
simple case of a triaxial compression test, axial stress
increased. The natural principal strains (Hencky) are defined
by

x X x

cl=lnTl. c2=lnxi, 1:3=lnx—:l (1

10 20 30

where X.= initial X, where x, is the vertical dimension of

[n triaxia!
strain and €.

tests the following
for the

etc.
for the axial

the sample at time t,
symbols are used: €

radial strain. The natural volumetric strain is simply given

by
(2)

where V°= initial volume V. The isotropic component of strain
€ is
cmal " %2 " F3cfa r
3 3

(3)

(4)
or

(5)
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The theoretical equations are applied to experimental data on drained and undrained

The natural general shear deformation n for our case is simply
given by

N=e -e =g -€ =g -€ =e€-e (6)
Since from egs. (3) an (5) we have that
e, *2e =0 %))
then, from eqs. (6) and (7)
e, = % - (8)

STRAIN-TIME EQUATION

All triaxlal tests on soils produce creep curves simllar to
the ones shown in Fig. 7 (Bishop, 1966). From these curves it
is obvious that they all obey the principle of Natural
Proportionality.

Let be the

o in the first

co
stage of the triaxial test and let Aa-a

Isotropic consolidation pressure

-0- 0, be the axial

increment of stress In the second stage of the test.

Some basic consideratlons of the problem are: when a certain
value of o -0 is applied, at t=0 we have ea-O and e,

1°3
increases to a final value L at t=w if the level of
stress Is below failure, that is, If we are In the stable
zone. If the level of stress s in the unstable zone, failure
will be produced and we will have e = (the negative

character of e, Is irrelevant at present) at a certaln fallure

time t.. The failure time t_. will be smaller as the level of

f f
stress increases. Between both zones, the stable zone and the
unstable zone, there exists a certain threshold level of
stress for which e,== at t=w, the frontier failure curve.

Let us consider first the stable zone. If the axial deviatoric



strain e, is a proper variable, its functional relation with

time should be as follows. The variable time varies from O to
o, it has a complete domain and, therefore, it is its proper
function. The variable e, varies from O to e its domain is

incomplete. Its proper function z, with a complete domain, is
the simplest possible function, and it is

1 1
zZ = — - — 9)
e er
where, for simplicity, the subscript a has been dropped. Now
we have that for t=0, z=o and for t=w, z=0 . z has a complete
domain and it is the proper function corresponding to the
proper variable e. The proper proportionality between them is

d dt
Lz . ¢

Z T (10)

where the minus sign takes into account that when t increases,
z decreases and £ is a constant of proportionality.

The constant § is a characteristic of the material (as it will

be shown later) and it is a measure of the non linear shear
viscosity of the material. A proper name for £ is "shear

fluidity”, since £ increases when the non linear viscosity
decreases.

Integrating eq. (10) we obtain

z t .-
— = (=) (11)
2y Y4

where (tl'zl) is a known point.
Introducing eq. (9) Into eq. (11) we obtain

1 1 1 1 t -€

—_—— =0 - =) () (12)
e [ e e, Y
which may be written as
e e
S R A SN (13)
e e t

An elegant and simple way of writing eq. (13) is In terms of

the point for which = 0.54.:r at tl=t' where t* is the

"characteristic time". Then, eq. (13) may be written as:
e
e = + (14)
1

)

However, a useful equation in practice is eq. (13) in the
form:

ot
.. S S
e e (15)
et o Bt
1 1
For the frontier failure curve, when ep=w for t=w, from eq.
(12) we obtain
_:_ - (%)E (16)
1 1

Let us now consider the unstable zone. Now e has a complete
domain from O to ®» , while t varies from O to tf. Proceeding

in a very similar way we now have that the proper function

for t is

1
- an
t

N
[}
-0|'—

Now we have that for e=0, z=w and for e=w, 2z=0. The proper
proportionality between them is now
de

_ dz
- - &% (18)

where the constant of proportionality € is assumed to be the
same than for the stable zone since it is a measure of the
fluidity of the material.

integrating eq. (18) we obtain

< =2 (19)
1 1

Introducing eq. (17) into eq. (19) we obtain

LN
t 1 - £
LI LI (20)
€ L
Y te
which may be written as
St
< - y & (21)
1 r_,
T,

An elegant and simple way of writing eq. (21) is in terms of

the point for which tl=0.5tf at el=e' where e® is the

"characteristic e". Then eq. (21) may be written as

t
e=e (L -nF (22)

For the frontier failure curve, when e;=o for tf=m, from eq.

(20) we again obtain eq. (l16).
In the unstable zone the rate of strain, from eq. (21), is

1 e

(4]

"
=y
n
m

t
1 - —
te

It may be observed that for the frontier failure curve, egs.
(16) or (23) provide

é=e§ (24)

That is, for the frontier failure curve, the instantaneous
rate of deformation is € times the mean rate of deformation.

For the failure curves one important point is when the rate of
strain changes from decreasing to increasing, that is when
g—: = 0. It t' is the time at which this occurs, from eq. (23)
it may be found that

N
t —th (25)

that is, the change occurs at a time t’ somewhat smaller than

half the failure time tf'

The minimum value of é. that is, the value of e at t=t’ is,

from eq. (23)



(e) . =2
min

e -
T+ T =4 1 (26)

Fig.
for different values of £, eq.
(16)
unstable zone.
curves e

1 presents the graphs of the creep curves in log-log plot
(1S) for the stable zone, eq.
for the frontier failure curves and eq. (21) for the
All curves are plotted using for the stable

¢ = 10 €, and for the failure curves tf= 100 tl.

Important characteristics of them are noted in the figure. All
frontier failure curves are straight lines where £ are the
slopes. All stable curves plot below the frontier failure
curves and are concave downwards. All failure curves plot
above the frontier failure curves and are concave upwards. The
characteristic times have been noted in the stable curves as
well as their middle thirds that plot very close to straight

lines in semi-log plot. The characteristic strains and the
points where % = O have been noted in the failure curves.

Fig. 2 presents the graphs of the same equations in semi-log
plots. All stable curves are symmetric with respect to their
middle points; they are concave upwards in their first half
and concave downwards in their second half; their middle third
is very close to a straight line. Further properties of these
stable curves may be seen in (Juarez-Badillo, 1985a) since
their equations are of the same structure than the general
equation of secondary compression for soils. All frontier
failure curves and failures curves are concave upwards.

The characteristic of the stable curves whose middle third is
practically a straight line is very useful in practice. This
property allows to estimate e Note also that in failure

‘curves, and depending on the value of €, their separation from

let us say,
allows in

the frontier failure curves occur somewhat “late”,
one cycle before tl.. This, for low values of §,

practice to estimate § from the beginning of the failure

curves and later on permits the calculation of tr from the
last part of the experimental creep curves.
Fig. 3 shows the graphs of failure curves, eq. (22), for

various values of £.

In practice it might be useful the log-log plots of the strain
rates. For the stable zone, from eq. (14) {t is obtained

e
A f(t )-1-€ t )-€1-2
e Et—;[p] [l*(P]J 27
At time t=t. we simply get
SR g (28)
t=t* 4 * "t%
Normalyzing eq. (27) by eq. (28) we get
Rt I TN
ét=t'
One important characteristic Is the slope In log-log plot.
From eq. (27) It is obtained
Mg ¥ oo iel) s - (30)
dlog t 1+ t
(L

From eq. (30) we see that the slope decreases from -(1-€) at

100
%0 ;'
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Fig 1 Graphs of creep curves for different vales of &
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See equations Infig. |
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Fig. 2. Graphs of creep curves for different values of § 1
tr
At t = we simply get
el
¢ =4£ (34)
2 f
Y Normalyzing eq. (33) by eq. (34) we get
: b I
Eomats L oyE (35)
. 3 1 t
& 1=
f
From eq. (33) it is obtained
dlogé_2+1+e (36)

. t -
Fig 3. Graphs of % .| l—’ _”£ for various values of §

t =0 to -(1+€) at t = ® (See Fig. 4).

For the frontler failure curve, from eq. (16) we get
e
éagt_l.[:—]e'l (31
1 1
From this eq. (31) it is obtained
—— = - (1-§) (32)

that is, the slope is constant all the way through, from t = 0
tot = o

For the unstable zone, from eq. (22) it is obtained

te
& e* t S _ 1€
e =g n T [T l] (33)
r l-t_
r
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f

From eq. (36) me see that the slope increases from -(1-£) at
t=Otomatt=tf(SeeFig. 5).

Fig. 4 shows the graphs of eq. (29) for different values of £
in the stable zone and Fig. S shows the graphs of eq. (35) for
different values of § In the unstable zone.

SHEAR STRENGTH-TIME EQUATION

Let (01-03)'.. be the level of stress that produces the
frontier failure curve with fallure time tf= o, If the level
of stress increases the failure time decreases and, at the

limit, we have (cl—c:‘)f= o for tr=0. The domain for tf is

complete but the domaln for ((rl-a's)r is not. The proper
function for (cl-tr:,)r is now
z = (u‘rl-n:ra)r - (crl-a'a)fw 37)

Now, for tf= 0, z = o and for tr= w, z = 0. The relationship



~

Fig.5 Graphs of —2—.-—4—

betwen them should be
dz dt

_= -

z t
where £ is the "strength fluidity" of the material.

Integrating eq. (38) we obtain

A

z _ .t
EARE
1 1

Introducing eq. (37) into eq. (39) we obtain

(38)

(39)
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(trl-cr:')r- (d‘l-d‘a)l_o o )'C

= (— (40)
loog)ey - (003 Y
which may be written as
(crl—cr:’)f (o‘l—ce)“ ¢
m Coe— putialid [ e i) R (a1
1773 e 173 1
Again, if it is chosen as the known point the point for which
(crl-ca)”= 2 (crl-o-a)fm at the characteristic time "‘1= t®, then

eq. (41) may be written as

-o.)
(o’1 o)

=14+ (7€ (42)

(a'l-ora)fm t*

where, for simplicity, the subscript f for t has been dropped
in the above analysis.

If (crl-o'a)fm= 0 the resulting equation is obvious from

eq.(40).

Fig. 6 presents graphs of eq. (42) for various values of &.

OBTENTION OF PARAMETERS

The structure of the above equations for the relationship of
strain and strength with time is the same than for the
"general compressibility equation for soils” (Juarez-Badillo,
1981) and for the "general time volume change equation for
soils” (Juarez-Badillo, 1985a). Further properties of these
equations are treated in detall in these references. In the
present paper some brief indications for the determination of
parameters are given.

The semilog plot is the best plot for the stable creep curves.
If the experimental curves allow to determine the beginning of

the straight section at e=a, then e = Ja. If not, a trial and

error procedure is needed. Three points in the experimental
curve are needed: an early point 3, a middle point 1| and a
final point 2. Then the value of § can be calculated from
points 1 and 2 and eq. (13) in the form:

e e.-e

log 2 f 1
e e.-e
€ = — 1 2z - r 2 (43)
lo 22
g

1

Later on, using point 3 the values of e. and € are confirmed

f
using eq. (13). Generally a second and a third trial are
needed until point 3 checks. Later on the characteristic time
is calculated using eq. (14) in the form:

¢t €.~ €, I/€
t* =t |¥| (44)
Uy

Once e € and t® are known, these values are entered in eq.
(14).

The log-log plot is the best plot for the failure creep
curves. However, with some experience, the semi-log plot Is
such as good. If tf is not known, it may be guessed and a very

similar procedure than for the stable creep curves may be
followed. However an alternative and more convenient procedure
in practice is: first to check the value of £ (from the stable
creep curves) with the first part of the experimental curves;
if € < 0.2, the first part should be considered at least one
cycle before failure, see Figs. 1| and 2; using eq. (16) In the
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form: Once tf, € and e® are known, these values are entered in eq.
€ (22).
log ——
€ = —Tl_ (45) For the strength-time equation, a semi-log plot is very good.
2 Three experimental points are needed to determine (¢ -0 ). , £
log e - 1 3T’ *
1 and te: an early point 1, say, at (0.1-1 min), a middle point
Later on with a final point 3, the failure time t may be 2 (10 - 100 min) and a late point 3 (1,000-10,000 min). First
f (a‘.-cra)fw is estimated and ¢ is calculated from eq. (41) in
calculated from eq. (21) in the form: .
the form:
e\ 1/ - - -
[__3] o 1 log (0= 93)pp = (o 95) g,
e (e,-0.) - (e -¢.)
1/ 1 "3°f3 1 3o
t.=t (46) = 50
f 3 rea\ 1/7€ tJ ¢ | 13 (50)
) T og
l 1 1 12
If the rate of sctrain é is known at point 3, "f may be or, if & is known, (vl-vs)f.. is calculated from eq. (41) in
calculated from eq. (23) in the form: the form:
t
3,8
= t (o.-0.) (=)™ - (o,-0.)
1. = Y. 47)
¢ Y 5 1 "3'f3 t.2 1 "3'f2
1 - (crl-o'a)- = (51)
te ES ty e
(t_) -1
Equation (47) is valid for the whole curve, but the 2
aproximation is better for points closer to tr.
Later on the values of (al-a_.’)]_m and § are confirmed using
If t'. is known, a useful equation for §, from eq. (21), is: eq. (41) and point 1. The values of (al-ca)l_m and ¢ should be
03 modified untjl point 1 checks. Finally the characteristic
log = failure time tf is calculated from eq. (42) in the form:
€= : (48)
t t, -t 1
3 f 1 (o.-0. ). -(c -0.) =
log —
T A ORI 1793711771773’ 1 T 52)
1 (o, -c.)
1 3'fw

a
The value of e is then calculated from eq. (22) in the form:

t

o
t3

e =, ¢ (49)
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Once (o-l-o'a)rm. ¢ and t.* are known, these values are entered

in eq. (42).

f



STRESS-STRAIN EQUATION'

"Basic stress strain equation for clays” (Juarez-Badillo,
1988) is the title of a paper pending of publication where a
stress-strain equation is postulated and applied to Weald
clay. Taking that paper as a basis the following equation is
considered in this paper for the practical application that
will be made:

d(crl-a'a)
1 c'.co ”co
de = - = u — (53)
a 3 o o, -0 v
eo [ P
T17%3'¢

where g and v are two constant parameters called the
coefficient of shear deformation and the shear exponent

respectively and is the overconsolidation factor where

co

Teo is the equivalent consolidation pressure, that is, the

pressure on the virgin compression curve corresponding to the
void ratio of the sample. The overconsolidation factor can be
o

found from the overconsolidation ratio o_—p by the equation
co
(Juarez-Badillo, 1975), (Juarez-Badillo and Rico-Rodriguez,
1975).
[ o
—=2 = ()P (54)
co co

where p Is the expansibility-compresslbility ratio.
Integration of eq. (53) gives, for v = 1

L ¢ -0 [
e = L, _co 1—3] In [l 1 3 (55)
a 3 LN %o f icl-caif
and for v = 2
[ - 1
1 co 13
S (o Jf [ T -0 -l] (56)
eo c 1- 13
o3¢

The experience of the author with Weald clay Indicates that
eq. (55), v = 1, Is very good for drained tests while eq.
(56), v = 2, s fairly good for undrained tests. However, at
high overconconsolidation ratios, for some undrained tests,
the coefficient u seems to increase very much in eq. (56).

It should be observed that eq. (56) Is very similar to the
hyperbollc stress-strain response proposed by (Kondner, 1963)
for cohesive soils. The main differences being that In eq.
(56) e, is the natural deviatoric axial strain Instead of the

common total axial strain In Kondner's equation and that the
constants considered In eq. (56) for the hyperbolic function
are Introduced. Eq. (55) may also be referred to as the
logarithmic stress-strain response.

STRESS-STRAIN-TIME EQUATION

Stress-strain equations (SS) and (56) do not consider the
variation of the strain with time. They refer to the
"instantaneous” strain when stress is applied, say for t = 1
min for undralned tests and t = tp for drained tests where tp

is the time for primary compression. But In reality e, O for

t = 0 and eaq- er for t = ». If we make the hypotesls that In

eqs. (SS) and (56) the coefficient pu is a function of time and
that all other quantities are time independent, we can write,
from eqs. (14), (55) and (56):

l*(—t;)

A further application to be studied in the future, is to
consider the variation of (a'l—tra)r with  time, writing from

eq. (42)
= t ¢
(0,0,); = o) [ 1) ] (58)
For the present paper, we can write, from eqs. (55), (56) and
(57)

For drained tests, v = 1

e=ly Teo 1_03] ln[ 1 173 ] ! (59)
a 3 %eo  Tco f (GI-G.JTf l+(%;)-g
For undralned tests, v = 2
¢ o -0
ol % Mo clg ( :- 3)1‘[ 2 icr _l] l (60)
eo co 173 t -§
“(o,-0.) 1+(za)
1 °3'f

Ko-TIME EQUATION

In the unpublished mentioned paper "Basic stress-strain
equation for clays", for v = |1, the following equation for Ko

was found:

B

L (61)
o

7

where Ko {s the earth coefficlent at rest, ¢ = angle of

internal friction and y = coefficient of compreslbllity In the
equation (Juarez-Badillo, 1975).

v o -7

where V = Volume and (u'l.Vl) is a known point.

Assuming again that sin ¢ is time independent, we have that Ko

Is time dependent because p is a function of time, eq. (S57).
The coefficient of compressibility ¥ Is time Independent.

Some data on the variation of Ko with time appears In (Mesrl

AK
and Castro, 1987). These data appear as values of A_T:t .
Differentiating eq. (61) we may obtain:
Mo _iele__&__ g,
dTogt = 7 552t
t
1 (63)

P N B S
sin ¢ T e
t

+

For t=t*®* eq. (63) becomes:



dK u

[} _ ] [3

[th ]m- =L (64)
[ 1 © ]2

sing’ T

3

1+

[\

Direct calculation of eq. (63) shows that the maximum values

dK
-]

dlogt
given by eq. (64) and that they occur at times various orders
of magnitud smaller than t®.

of are of the order of 257 higher than the values

PRACTICAL APPLICATION

Practical application of the above theory was made using
experimental data contained in (Singh and Mitchell, 1968).
These data show the variation of the common total axial strain
€. (Cauchy) with time in compression triaxial tests,

increasing the axial stress. The relationship of the natural
deviatoric axial strain e, to the common axial strain €. is:

€ x € Ax €
ea=ca—3—v=lnx—l-5!=ln(l+ 1)_3_v
10 10
€y
e =In(l+e )-— (65)
a c 3
€y
In undrained tests, the isotropic component 5 = 0 and in

drained tests the isotropic component is, normally, very small
compared to the natural axial strain, except in normally
consolidated samples of very compressible clays. Therefore,
the isotropic component was ignored. Furthermore, most of the
experimental data show maximum values of cc = =57 to which a

value of ea = -5.13%. corresponds. Therefore, for simplicity,

they were considered equivalent. So it was assumed that

e_=¢ (66)
a ¢

Furthermore, in this first analysis of experimental data, the
variation of strength with time was also ignored as already
mentioned.

All experimental data were analyzed following the procedure
described in Obtention of parameters. First the creep
parameters L € and t®, eq. (14), were obtained from the

stable curves, with slight adjustments to e to conform to one

of the stress strain equations (S55) or (56) to arrive to a
final eq. (59), v = 1, for the drained tests and eq. (60), v =
2, for the undrained tests. The values found for the different
quantities are given in the figures and here the final
equations will be presented. For the failure curves the

procedure was similar, finding first the creep parameters tf.

€ and e", eq. (22). The final equations are also given in this
section.

Figs. 7 and 8 show drained creep tests on undisturbed brown
London clay from Hendon. With the data shown in Fig. 7 the
final equations are, for the stable curves, eq. (59), v =1

. 71703 1
e,%-S.Oln[l- — ] — (67
a (o:v-l cr:’)f IR 0.045
10
and, for the failure curve, eq. (22)
3,120 _, -0.055

-e_,% = 3.55 (=—/— -1) (68)
a t

In these figures "the applied principal stress differences are
percentages of the peak values measured in drained triaxial
tests of 5 days duration”. The fixed percentages shown were
the values used in eq. (67).

Here it was found § = 0.045 for the stable curves and € =
0.055 for the faijlure curve. In Fig. 8 it should be observed
that the experimental points at t = 10 min, specially the
point with stress level 90-106%, which failed at t = 3,120 min
= 2 days 4 hrs., indicate a greater strength at t = 10 min, of
the order of 107, than at t = 300,000 min = 208 days.

In practice an important quantity is the fraction of the
"instantaneous strain” at t = tp or, say, t = 10 min, with

respect to the total strain at t = @ . This can be calculated
from eqs. (14) and (57). Then, we can write, for the ‘stable
curves
e I
€ = 0.045, t* = 109 min, ;1_0 = “LO = 0.30 (69)

Figs. 9 and 10 show undrained creep tests on overconsolidated
indisturbed San Francisco Bay mud. With the data shown in

Fig. 9 the final equations are, for the stable curves, eq.
(60), v = 2
-e % =35 1 ! (70)
a’” : o -0y L e (ot )-0.18
1- 75,000
1.2
and, for the failure curve, eq. (22)
-e % = 6.15 (2390 )"0 n

Here it was found £ = 0.18 for the stable curves and € = 0.20
for the failure curve. In Fig. 10 it should be observed that
the experimental points appear to indicate higher strength at
t= 1 min than at t = 1,000 min . In this case the upper curve,

D= 0.99 kg/cmz. was found to be a failure curve. A probable
frontier failure curve has been plotted, eq. (16), using

€ = 0.18 and = 1.1% for tl= 1 min.

For these undralned tests, if we consider the "instantaneous

strain” at t = 1 min, we can write for the stable curves, from
eqs. (14) and (57):

1 ¥

€ = 0.18, t* = 75,000 min, = =0

= 0.12 (72)

Fig. Il shows drained creep tests on two samples of dry
illite. Taking the geometrical average of the data shown in
Fig. 11 we can write for them the final equation as, eq. (14):

2.8
ey % = T .-0.062 (73)
1+ (—9)
2.4x10
Considering the “instantaneous strain” at t = 1 min we can
write for this case:
9 N
£ =0.062, t" = 2.4 x 10° min, — = — = 0.21 (74)
eD “m

Figs. 12 and 13 show undralned creep of saturated+ remolded
illite. "Water content of all samples = 34.3 -0.1%. All

samples initially consolidated to cr::= 2.0 kg/cm2 at 68°F, then

overconsolidated by increasing Temp. to 110°F under undrained

conditions. Cell pressure = 4.0 kg/cmz". With the data shown

in Fig. 12 the final equations are, for the stable curves, eq.
(60), v = 2:
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Fig. 8 Drained creep fests on undisturbed brown London . s
clay from Hendon € = 0.15, t* = 150,000 min, _* = - = 0.14 m
- “.
For this case, the experimental points In Fig. 13 appear to
-e, % = 2.17[ E 1 (75) lnldlcate. again, higher strength at t = | min than at t =1,000
a 42 14( t )-0.15 min.
7 150,000
Fig. 14 shows the application of eq. (41) to the fallure data
and for the fallure curves, eq. (22): of Figs. 12 and 13. The fallure data conslst of only 2 points
A while 3 points are needed to deflne eq. (41). Fig. 14 shows
AL § -€ 76) the graphs of eq. (41) and the corresponding values of
e, % =e " (-l (0,o4). for three values of & 0.12, 0.18 and 0.30. The
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Fig.12 Undrained creep of saturaied remalded illite
values of t*, eq. (42), are also shown. If, as an example,

the values of { and € were equal, {=£, the final equation
would be, Eq. (42):

(o,-0.) kg/cm2 = 1.485[ 1+(

t -0.18
1) ) } (78)

0.00041

@

/=0 foilure ol <85 %, 1¢ =170 min

D 101 -03
kg/cm?
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===11 (G- Oy )j = 1.85 hg/cmat 1= I min | See teat)

1 2 3 4 5 & T 8 9 10
-€9,%
Fig. 13 Undrained creep of saturated remoided illite

and the strengths at t = 1 min and t = 1,000 min would be
2 2 2

(01—03)” = 1.85 kg/cm” and (01-0'3)“000 = 1.59 kg"/cm”, that

is, 25% and 7% higher than at t = w, respectively.

At this point it is important to observe that at t = 1,000 min

the stress - strain relation behaves as if the strength were

somewhat higher than 1.7 kg/cmz, Fig. 13, while the real

strength is 1.59 kg/cmz. Fig. 14, that is, the first is 7%
higher than the second strength. This effect was first
observed by Kondner (1963). However, from Fig. 14 it is found

that at t = 1 min, if = 0.18, (cl-ca)r= 1.85 kg/cmz. value

that fits very well with the wupper points in Fig. 13,
suggesting that the difference above mentioned is a time
effect. Is it 7. Experimental evidence is needed for a flnal
conclusion.

Some practical application of the variation of Ko with time,

eq. (61), is as follows.

For Weald clay it was found ¢ = 21.8°, ¥y = 0.06
(Juarez-Badillo, 197S) and p = 0.10 (Juarez-Badillo, 1988)
and, therefore, eq. (61)
0.10
1 2.69 + 308 -1
4]

Ko =—3 18— " 0.63 (79)
2.69 + 006 +1

This value isfort=t.Fort=0.¢=90°and 4 = 0 and,
therefare, KO = 0. For t = o, if we consider the relation
given for Londaon clay By = 0.30 B, €q. (69), we obtain for

Weald clay B, = 0.33 and assuming the same value of ¢
0.33
2.69 + 006 1

Kom =—333 = 0.78 (80)
2.69 + 0.06 +1

and the progress of Ko with time would be given by eq. (61)

with g given by eq. (57) once the values of € and t" for Weald
clay are known.

Mesri and Castro (1987) have published some experimental data

AK dK
[]

< u
o . «
of ATz © In eq. (64), dTogt ]t=t depends on &, 7 and
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¢. For € = 0.1 the values of eq. (64) for different values of The measured values reported In Table 2 are, therefore,
M within the range gilven by eq. (64). However, a flnal
=5 and ¢ are concluslon s to be reached by direct application of egs. (61)

dK

o
Table 1. W]t-‘, for € = 0.1

Values of

Yo

7 2 5 10

¢
20°
30°
40°

0.010
0.014
0.018

0.014
0.019
0.023

0.014
0.018
0.020

Taking into account that at t < t* these values may be of the
order of 257 greater we have that for values of § from O to
dK

o
d log t

0.3, the values of may be from O to 0.086.

The measured values for S clays are

Table 2. Values of measured %t (Mesri
and Castro, 1987).
A Ko
Soft clay A Tog t
Bay Mud 0.025 - 0.065
Saint Alban  0.020
Broadback 0.045
Atchafalaya 0.038
Batiscan 0.070

347

and (57) to those clays.

FINAL COMMENTS

The main purpose of this paper
considered to be general relationships of devlatoric stralns
and strengths with time during the trlaxlal testing of
geomaterials. Eqs. (14), (22) and (42) were found applylng the
princlple of Natural Proportlonality wich has been already
applied to various physical phenomena (Juarez-Badillo, 1985b).
The stress-straln equations (55) and (56) are considered still
not to be general. They were Included as a second step towards
a general equation to be found in the future. Egs. (55) and
(56) were applied to Weald clay finding that eq. (S5) Is very
good for drained tests, compression or extension, varying only
the axlal stress, varying only the radlal stress or "l = cte.

with u = 0.10 up to OCR = 24. Eq. (56) was found to be fairly
good for undrained tests, for compression tests with u = 0.04
and extension tests with uy =0.02 up to OCR = 2. For higher
OCR pu Increased with the OCR [n both types of tests, to a
value of g4 = 0.20 for OCR = 24. This shows that eq. (56) needs
great improvements.

is to present what are

To Improve eqs. (14), (22) and (42) very good tests with great
accuracy to Include eq. (42) in eqs. (59) and (60) are needed
as well as to dilucidate the difference between the real
strength of soils at different times with the strength to be
used in egs. (59) and (60) if such a difference exist.

One important point is to find the factors that influence the
values of the "fluidities”, the volume fluidity & (formerly



called volume viscosity), the shear fluidity £ and the
strength fluidity ¢&. Mainly, do these properties vary
with the type of triaxial test? And how do the scale affects
them ?.

The author feels that the principle of Natural Proportionality
may be applied succesfully to other physical phenomena such as
to partially saturated soils and to dynamic properties of
geomaterials. In respect to earthquakes, if the proper
variable is found, which is necessarily related to the
movement of the tectonic plates, eqs. (46) or (47) would give
the time of the occurrence of the earthquakes.

CONCLUSIONS

The main conclusions may be as follows

1. The principle of Natural Proportionality has succesfully
been applied to the creep phenomena in clays.

2. Simple equations have been found to describe the creep
phenomena in the stable zone as well as in the unstable zone
of geomaterials, eqs. (14) and (22).

3. A simple equation has been found to describe the shear
strength of soils as function of time duration of deviatoric
stress level In the unstable zone, eq. (42).

4. Simple equations

egs. (61) and (57).

describe the variation of KO with time,

S. "Instantaneous strains" at 1 or 10 min in triaxial tests
are really a small part, of the order of 10 to 30%, of the
final strains at t = o.

6. The shear fluidity € and the strength fluidity g, together
with the volume fluidity &, formerly introduced, appear to be
fundamental properties of geomaterials.

7. Good experimental data, howewer, are needed to find the
factors that influence the values of the fluidities mentioned.

8. The potentiality of the principle of Natural

Proportionality to describe other physical phenomena is very
promising.
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