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S YN O P S IS :  As  a  pa r t  o f  a  s pe c ia l r e s e ar ch p r o je c t  c o nc e r n in g  the  g e o te c hn ic a l d e s ig n  o f  jo in t le s s  b r idg e s  fo un d e d  o n  la rg e  d ia me te r  p ile s , the  

r e s ults  o f  ho r izo n ta l lo a d  te s ts  o n  a c tua l jo in t le s s  3- s pan r a ilw a y  und e r pa s s  (L  =  4 9  m ) are  pr e s e nte d  in  th is  pa pe r . T he  h o r izo n t a l r e s pons e  d ue  

to the  lo n g it u d in a l lo a d  F  =  5 0 0  k N  w a s  o bs e r ve d a n d  c o m pa r e d  w it h  F E M  a na ly s is  c o ns is t in g  o f  a  3 D  s o il s p r ing  m o d e l (2 7 8 0  D O F )  a n d  a  3 D  

m a te r ia l m o d e l (3 8 2 0 0  D O F ) .  T he  g o e te c hn ic a l p r ope r t ie s  o f  the  s o il we re  d e t e r m ine d  th r o ug h  the  s tanda r d la b o r a to r y  a n d  in- s itu te s ts . T he  

s tr uc tur e  w a s  m o d e lle d  w ith  o r d ina r y  s he ll a nd  b e a m  e le m e n ts  in c lu d in g  a c tua l r e in fo r c e d  c onc r e te  m a te r ia l b e ha v io ur .

1. IN T RODU C T ION  

Ge ne r a l

Dur ing  the  las t decade  a growing  interes t to cons truct the  br idge  s tructure  

w itho ut  e xpans ion jo in ts  be twe en the  abutme nts  and the  supe rs tructure  has  

raised. T his  is  due  to the  nume rous  advantage s  in  r e la tion to the 

conve ntiona l type  o f  br idge  s tructure . Such advantage s  c ould  be  me ntione d 

the  mate r ia l, cons truc ting and m a in te na nc e  costs , w h ic h vanis h whe n 

choos ing the  joint le s s  type  o f  br idge  s tructure , i.e . the  r ig id  conne ction 

be twe en s ubs tructure  pile s  and the br idge  de ck. In  this  conte x t s hould also 

be  me ntione d the  up  move d time  s che dule  factor . In  a ddit ion to the  issues  

me ntione d above , an increased ne ed to de ve lop and o pt imize  the  jointle s s  

br idge  s tructure  has  came  up. T his  ne ed is  due  to  the  increase  o f speeds  

e s pe cia lly in  ra ilway br idge s  as we ll as the  de mands  fo r  more  e ffic ie nt  and 

e conomica l cons tructing. T he  increased knowle dge  o f the  s oil be haviour  as 

w e ll as  the  c ont inuous ly growing  compute r  capacity pr ovide  e xce llent 

fac ilit ie s  to response  to this  need. In  the  cur re nt de s ign proce dure  e s pe cially 

the  t ime  and s train depende ncie s  o f  soil parame te rs  are not  take n into 

account we ll e nough. T his  may in  turn cause  ove re s t imation o f stresses and 

s trains  in  the  br idge  s tructure  thus  le ading to une conomica l de s ign.

T he  use  o f the bear ingle s s  type  o f  s tructure  provide s  not  only  e conomica l 

advantage s , but also s tructural proble ms . In  this  cate gory mus t  be  inc lude d

i.e . the  s tructural and e conomica l le ngth lim it  o f  the  br idge  deck. T his  

limita t ion  is  ma in ly  due  to the  r e lative ly h igh  be nding  stresses induce d 

e s pe cia lly into the  p iling  at the  ends  o f  the  deck. T his  is  caused by the 

the rmal e xpans ion and contrac tion combine d w ith pos s ible  de ck shr inkage  

e ffects . T his  proble m can howe ve r  be  - to a  ce r ta in e xtent - take n care  o f  by 

fle x ible  p iling . T his  in  turn creates  an a dditiona l r e guire me nt into  the de s ign 

procedure ; the  the rmal e ffects  s hould not be  take n into account in  ultimate  

lim it  s tate , because  it leads  to s ignificant  ove re s t imation o f p ile  s tructure . 

T he  the rmal e ffects  w ill take  place  anyway, so there  is  no  po in t o f  res is ting 

this  phe nome non. T he  w orkability  o f  conne c tion e le me nts  mus t  howe ve r  be 

checked.

T he  use  o f  IAB- s tructure  whe n de s igning br idge s  is  thus  a s traightforward 

choise . T his  type  o f br idge  w ill introduce  dis advantage s  and advantage s , the 

latte r  o f  w h ic h are howe ve r  pre fe rable . It  causes  addit iona l reguire me nts  for

the  de s igne r  but  give s  also an oppor tunity  to opt imize  the  s tructure  to a 

re markable  extent. As  far  as s tructural e ngine e r ing e conomics  is conce rned, 

this  chois e  offe rs  an obvious  improve me nt in  be tte r  dire ction.

L in k in g  th is  pa p e r  to  the  r e s e a r ch p r o je c t

T o provide  response  to the  needs  me ntione d above  reguires  not  only  

e laborate  and update d knowle dge  o f the be haviour  o f  s oil but  a lso fu ll scale  

load tests. Car rying out  load tests w ith ac tua l s tructures  w ill not  only 

suppress  the  scale  e ffe ct but  can also be  re lative ly che e p if  the  de s ign and 

t im ing  o f ins trume ntations  are prope r ly conne cte d w ith cons tructing time  

s che dule . U t iliz ing  the fac ilit ie s  pr ovide d by nume r ica l me thods , such as 

F E M, and high compute r  capacity cur re ntly ava ilable  g ive  the de s igne r  an 

e xce lle nt oppor tunity to che ck whe the r  the  the ory and practice  match with 

e ach othe r  o r  not. In  orde r  to che ck the  accuracy o f cur re nt de s ign procedure  

by c omb in ing the lates t infor ma tion o f soil be haviour , FEM- te chnigue , high 

c ompute r  e ffic ie ncy, prope r  parame te r  e s t imation, e laborate  cons titutive  soil 

mode l and e mpir ica l ve r ifica tions , this  research proje c t was  thus  s tarted. T he  

r e s ults  o f  th is  pa p e r  thus  b e long to  the  e m p ir ic a l p a r t  o f  th is  p r o je c t .

T he  a im o f this  research proje c t is  to e xamine , ho w  the  bre ak loads  and 

te mperature  e ffects  s hould be  take n into account in  the  de s ign o f joinle s s  

br idge s  from geote chnical po in t o f  vie w. Factors  a ffe c ting the  hor izonta l 

response , s uch as end plate s , the  s tiffnes s  and numbe r  o f pie rs , r a ilway 

tracks , trans fe r  s labs  e tc., w ill be  e xamine d too. A fur the r  goa l in  the  project 

is  also to find out  the  te chnica l and e conomica l le ngth o f jo int le s s  bridge  

s tructure  in  the  frame  o f update d knowle dge  conce rning the  be haviour  o f  soil 

and computa tiona l me thods . In  this  conte x t the  type  o f pie r  - dr ille d pie r, 

s teel pipe  pile , compos ite  pile  - w ill be  e xamine d as we ll. T he  analyses  w ill 

be  ve r ifie d by car rying out  not  o nly  late ral loading  tests  b ut  also brake  load 

tests w ith trains  and ve hicle s . In  addit ion  to this  s easonal long te rm 

me as ure me nts  w ill be  done .

In  the  recent de s ign practice  several aspects  pr oviding  more  e conomical 

subs tructure  are not  take n into a c c ount  For  e xample  the  e ffe ct o f 

c ont inuous ly we lde d tracks  or  trans fe r  s labs  are cons ide re d ne glig ible , due  to 

wh ic h the  e s timated hor izonta l de fle ctions  are cons ide rably highe r  than the 

real value s . T his  in  turn causes  ove re s t imation o f the  stresses in  pie rs . In 

a ddit ion to this  s hould be  me ntione d the  d y na mic  s oil prope rtie s  unde r  break
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loads  in  br idge s ; the  dynamic  response  o f s oil can be  cons ide rably highe r  

than the  c or re s ponding s tatic value s  thus  le ading to - i f  take n into  account - 

s malle r  late ral de fle c tions  and s malle r  stresses in  piers .

T he  cur re nt finn is h  ge ote chnica l code  o f practice  fo r  de s ign o f br idge s  w ill 

be  update d by these ne w aspects  ve r ifie d b y load tests . T his  update d code  o f 

practice  w ill cons ide r  highwa y br idge s  and r ailway br idge s  s eparate ly and 

w ill also propose  the  use  o f  pile  type  according to the  le ngth o f  the br idge  

and the soil condit ions .

T he  c onte n ts  o f  th is  pa p e r

T his  pape r  contains  results  o f  a  series  o f  full scale  load tests o n  actual 

bear ingle s s  r a ilway br idge . T he  br idge  is  a  3- span joint le s s  and continuous  

re inforce d concre te  unde rpas s , the le ngth o f  w h ic h  is  49  m (figure  1). T he  

bore d pile s  (d = 0 ,9 m  - 1,2 m ) we re  reached to the  be drock through clay, 

s ilt, s and and base  mor a ine  depos its . T he  long itud ina l load F  =  500 kN was  

applie d to the  othe r  e nd o f the  br idge . T he  lo ad ing  program cons is ted o f  13 

separate  tests. T he  response  o f s tructure  was  the n me as ure d and the  results  

were  averaged for  the  compar is on o f FEM- analys is . T he  response  obse rved 

from tests conta ins  firs t o f a ll the  long itudina l, transve rsal and ve rtical 

de fle c tions , the  firs t o f w h ich  were  me as ure d from b oth ends . T he  br idge  

s tructure  is  s lightly curve d, thus  a m ino r  transversal de fle c t ion was  obse rved. 

T he  longitudine d s tiffnes s  in  the  ear ly e las tic range  was  the n easy to be 

e s timated. In  orde r  to de te rmine  the  shear  o f  tracks  o f  the  hor izonta l capacity 

the  s trains  - and thus  the  forces  - acting in  the tracks  as  we ll as  the  re lative  

s lide  be tween the  tracks  and the  de ck were  also me as ure d. In  a ddit ion to this  

the  earth pressures  in  three points  on the  oppos ite  e nd plate s  were  also 

obse rved. T he  pressure  - de fle c tion re lation was  the n compare d w ith FEM-  

analys is . T o obtain the  s tresses in  the  pile s  the  s trains  o f s teel rebars  in  pie rs  

were  me asure d. Compar ing  the  s trains  o f  rebars  w ith FEM- analys is  is  ve ry 

handy because  the  c or re s ponding va lue s  are e as ily obta ine d fr om re inforced 

concre te  be am e lements  in  the  FEM- mode ls . T he  ge ote chnica l parame te rs  o f 

the  subsoil as we ll as  the coarse  ba ck fill we re  de te rmine d w ith s tandard 

laboratory e quipme nt and in- s itu me as ure me nts . T he  firs t FEM- mode l 

(2780 DOF ) is  based o n nonline a r  s oil s pr ings  from the  ge ote chnica l point  

o f  vie w. T he  othe r  mode l (38200 DOF ) in  turn uses  real s oil mate r ia l 

be haviour  w ith s olid soil e lements .

2. T HE B RID G E  S T RUCT URE A N A L YS E D  A N D  T H E G RO U N D  

C ON DIT ION S

T he  type  o f b r id g e  ana lys e d

T he  br idge  s tructure  analys ed (figure  1) is  a  joint le s s  cont inuous  three 

s panne d ra ilway underpas s . It is  located in  the  s outhe rn par t o f  F in la nd  in 

about the ha lf way be twe en He ls inki and T urku. T he  cons truc tion mate r ia l 

is  re inforced concre te  w ith mate r ia l parame te rs  E =  29 ,6  GP a , a y = 24,5 

MP a  and v = 0,2. T he  re inforc ing rebars  used be long  to  the  B5 00P  class  

s teel mate r ia l w ith o y =  500 MP a . T he  br idge  is  s lightly curve d (R =  3280 

m ) and cantile ve re d (2 m). T he  e ffe ctive  le ngth o f the  s tructure  is  2  +  12 + 

14 +  12 + 2 m = 42  m. T he  total le ngth w ith w ingw a lls  (2 x 3,5 m ) is  thus  

L  = 49  m. T he  cross- section is  6 m  w ide  and has  o n ly  one  pa ir  o f 

c ont inuous ly we lde d tracks  (U IC  54) w ith 0,55 m track ba llas t layer. T he  

br idge  is  founde d on bored pile s  r ig idly conne cte d to the  de ck and reached 

to the  bedrock. T he  length o f the  pie rs  are approx imate ly 25 m . T he  

diame te r  o f  the uppe r  parts  o f  the  e nd s uppor t pie rs  are D  =  0 ,75 m  and 

middle  suppor t pie rs  D  =  1,05 m. T he  diame te r  o f  the  lowe r  parts  o f  pie rs  

are D  = 0,9 m and D =  1,2 m , respective ly. T he  s tructure  has  e nd plate s  al 

both ends , the d ime ns ions  o f which are; breadness  B =  5,6 m , thickne s s  t =

0,75 m  and flight H =  1,9 m toge the r  w ith the  de ck. T he  b a ck fill is 

suppor te d by e nd bear ing pile d concre te  raft s lab. No trans fe r  s labs  were 

cons tructed.

T he  g r o u n d  c o nd it io ns

T he  highwa y unde rpas s ing the  analysed r ailway br idge  goes  through a  c lay 

ope ning, the  undra ine d shear  s trength o f wh ic h was  obse rved from the  fall 

cone  tests from undis trube d s ample s  and "in- s itu" vane  s he ar  tests. T he  

s lopes  were  covered with geote xtile , grave l and ce rtain cove r  s tone  mate r ia l.

T he  prope rtie s  o f  the  s oil be low the  c lay  laye r  we re  de te rmine d w ith the 

comb ina t ion  o f dynamic  pr obing tests and the  we ight s ounding  tests. T he  

prope rtie s  o f the  s ilt depos it unde r  the  c lay laye r  were  g ive n as  for  a fr ic tion 

type  o f soil. T his  was  because  it  was  ma in ly  coarse  and it  was  not  pos s ible  

to conduc t  a  vane  s hear test in  this  depos it. Unde r  this  s ilt  de pos it  there  were 

layers  o f  s and w ith alte r ing degrees  o f re lative  dens ity. Ex c lud ing  the 

s uppor t 1 there  was  a  laye r  o f  mora ine  o f m ino r  thickne s s  o n the  rock 

ha ving  a re lative ly h igh degree  o f  re lative  dens ity. T he  pie rs  were  reached to 

the  be drock, the  s urface  o f  wh ic h was  s ituate d at hight  le ve ls  a lte r ing from - 

17,8 m to - 12,3 m. T here  was  a s light va r ia tion o f ground condit ions  

be twe en the  ne ighbour ing pie rs  in  the  end suppor ts . Additiona l vane  shear 

te s ting as we ll as s ampling  were  carr ied out  in  the s ite  afte r  finis hing  the 

cons truc tion and the ope ning, because  the  dis turbance s  dur ing  the  work 

process  mos t e vide ntly have  change d the  prope rtie s  o f  the  soil. Due  to the 

unde r going road ope ning  the ground wate r  table  had to be  pe rmane ntly 

lowere d for  two mete rs . T he  ground condit ions  w ith the  corre s ponding 

parame te rs  fo r  the  FEM- analys is  (s pr ing mod e l) as we ll as  the  br idge  

s tructure  are presented in  figure  1.

3. L O A D  T EST S A N D  E XP E RIM E N T AL ARRAN GE M E N T S

T he  loading  program cons is ted o f  13 separate  tests , the  force - time  

de pende nce s  o f wh ic h were  line ar . In  the tests  the  force  was  created from 

ze ro to the  total value  F  = 500 kN in  about At =  13,6 s. Due  to the  loading  

arrange me nt (figure  2) and the be nding mome nt  capacity o f pie rs  this  was  

the  m a x imum a llowable  load. T he  total force  was  ke pt cons tant for  a pe r iod 

o f about  t = 4  s, afte r  w hich it  was  r apidly r e move d. T his  a r range me nt was  

applie d through all the  tests , because  in  pr e limina ry  tests no  scatte r in 

response  was  obse rved in compar is on w ith s lowe r  load r e mova l. T he  total 

force  cons is ted o f tw o long itud ina l forces  (2 x 25 0  kN) both ac ting o n the 

e nd s uppor t pie rs  (s uppor t 1) at the  h ight  o f  1,25 m  be low the  de ck (figure  

2). T he  forces  were  created by tw o hydr aulic  ja c ks  and controlle d by force  

transducers . T he  me as ure me nts  were  carr ied out  w ith s ix te e n s imultane ous ly 

active  da ta  logge r  channe ls . T he  infor ma tion  was  recorded as a func tion o f 

t ime , a llthough the  nature  o f loading  was  s tatic. T he  de fle c tions  obse rved in 

long itudina l, transversal and ve r tical dire ctions  were  me as ure d w ith special 

de fle c t ion transducers  (pote ntiome te rs ), the  accuracy o f w h ic h are  a bout  10'5 

m. T he  de fle c tions  were  me as ure d in  r e la tion to a fixe d s ca ffo lding  located 

ne ar  the  loade d e nd o f the  de ck (figure  1). T he  long itud ina l de fle ctions  were  

also me as ure d at the  oppos ite  e nd o f the  br idge . T his  va lue  is  ac tua lly  the 

re lative  move me nt be twe en the  back p ile  s lab and the  e nd pla te  o f the  deck. 

T he  re lative  m o ve me nt be twe e n the  de ck and the  tracks  we re  also me as ure d 

w ith de fle c t ion transduce rs  (pote ntiome te rs ). T his  - combine d w ith the 

r e cording o f s trains  and thus  also forces  in  the  tracks  - was  carr ied out  in  

orde r  to fmd  out  the share  o f  hor izonta l capacity rece ived by the  track 

sys tem. T he  earth pressures  o n the  oppos ite  e nd plate  we re  obse rve d in  three 

points  in  about the  h igh t o f H/2 o f the  e nd plate . T he  capacitie s  o f  r ound 

s hape d (d =  0,2 m) pressure  transducers  are 200 kPa. No wate r  was  absent 

in  the  backfill. T he  s trains  in  the  pie rs  were  me as ure d 0,25 m be low the 

de ck and also in the  ja c king  point . T he  s train gage  re cording o n the  mois t  

concre te  surface  was  not  s ucce s full and thus  the  gages  were  ins ta lle d o n the 

smoothe ne d rebar (d, = 32 m m ) surfaces .

4 . T HE  F EM- AN ALYS IS

Ge ne r a l

In  orde r  to analyse  the  br idge  and the  test results  the ore tica lly tw o three 

d ime ns iona l FEM- mode ls  were  de ve lope d. Allthoug h the  ge ote chnica l point  

o f vie w  was  e mphas ize d in this  context, no  libe r ty could be  take n in 

mo d e lling  the  s tructure  in a prope r  way. T he  mode ls  were  analys e d with 

ABAQUS- FEM- code . T he  s ma lle r  mode l was  ran in the  Kubo ta  3000 - 

minis upe r compute r  owne d by the  Co mpute r  Ce nte r  o f  T ampe re  Unive rs ity  

o f  T e chnology. T he  large r  mode l had to be  ran in  Cray- s upe rcompute r  

owne d by the  Stale  Compute r  Ce nte r  in He ls inki. De s pite  the 3- D characte r  

o f  the  mode l the  total numbe r  o f  DOF  o f the  firs t mode l was  o nly  2780  thus  

be ing re lative ly mode rate . T he  e lapsed CPU- time  pe r  inc re me nt w ith the  firs t 

mode l (Kubota  3000- msc) was  about 18.9 sec and w ith the  large r  mode l 

(Cray- sc) about 29 0  sec. T he  loads  applie d in  the  analyse s  in  a ddition to the 

ja c k ing  force s  were  the  s e lfwe ight o f  the  concre te  s tructure , the  track ballas t 

and the track- sleeper- system. In  the  fo llo w ing  texture  the  s pr ing mode l
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Figure  1. T he  g round condit ions  and the  br idge  s tructure .

(2780 DOF ) and the  mate r ia l mode l (38200 DOF ) are ca lle d as FEW3D-  and 

F ECM3D- mode ls , respective ly.

T he  s t r uc tu r a l m o d e lling

T he  supe rs tructure  o f the br idge  was  forme d w ith 92 (F E W3 D) four- noded 

she ll e lements  thus  having  s ix  degrees  o f  fre e dom pe r  node . T he  thickness  

o f  these e lements  fo rming  the  de ck was  t =  1 m . T he  cont inuous ly we lde d 

track sys tem was  not mode lle d in par ticular , but  it  was  cons ide re d w ith 

alte r ing degree  o f fix ity  in  r e la tion to the  de ck - see ne xt part; de te rmining 

the  value s  o f  the  de ck surface  fr ic t ion spr ings . T he  e nd plate s  were  not 

mode lle d  in  pa r ticular  e ithe r , because  the  e ffe ct o f  the  back fill could be  

take n into account without  the m in  this  pa r ticular  loading  case . T he  steel 

rebars  could also be  cons ide re d according to the  actual re inforce me nt with 

s pe cial options  / l/ .  T he  curved s hape  o f the de ck (R =  3280 m) was  also 

take n into a cc ount  In  orde r  to reduce  the  numbe r  o f  D O F  o n ly  one  h a lf o f 

the  real mode l is  analys ed in FECM3 D- c omputa t ion  (figure  3). T he  bored 

pile  s tructure  (F EW3 D) was  mode lle d w ith 303 two node d (1 = 0,5 m ) beam 

e lements  w ith s ix degrees  o f fre e dom pe r  node . In  the  FECM3 D- mod e l the

re inforced pile  s tructure  was  in turn presented by s olid e lements . T he  inne r  

(not  re inforce d) and oute r  par t o f  the  pile  was  mode lle d w ith 6- noded pr isms  

and 8- noded line ar  br icks , re spective ly. T he  re inforce me nt was  cons ide re d in 

s imila r  way as in  the she ll e lements . T he  e las tic and plas tic  be haviour  o f 

concre te  as we ll as the  s teel rebars  were  g ive n for  the  input, a llthough the 

be haviour  o f the  s tructure  was  e s timated to be  e las tic. T he  pie rs  were  

reached to the  be drock, thus  the ir  e nds  were  fixe d in ve r tical dire ction. To 

avoid nume r ica l proble ms  additiona l s pr ings  with nomina l s tiffnes s  were  also 

applie d to the  ends  o f  the  piers .

T he  g e o te chnica l m o d e lling

In  the  FEW3D- mode l the geote chnical pa n  o f the  ana lys is  was  base d on 

mo de lling  the  s oil w ith hor izonta l nonline a r  s pr ings  and the  subgrade  

reaction me thod. T his  is  a we ll- known proce dure  to represent the  be haviour  

o f s oil. T he  popular ity  o f the  me thod is  due  to the  ease a nd handine s s  o f  use 

not to me ntion the re lative ly good accuracy also asce r tained by the  author  

151. As  additiona l advantage s  o f this  me thod s hould also be  me ntione d the
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Figure  2. T he  e xpe r ime ntal arrangements .

s ubgrade  reaction coe ffic ie nt n,, was  e s timated according to the  present 

furnis h code  o f practice  for  dr ive n pile s  /4 /  and is  pre sented in  figure  7. T lx  

late ral s pr ings  were  active  in both hor izonta l dire ctions . An  e xample  

ca lcula t ion o f s oil s pr ings  is  s hown in figure  8. No  ve r tica l s pr ings  - 

s imula t ing  the  pos s ible  shape  res is tance  - we re  set a long  the  pie rs , because  

the  ma in  interes t o f  this  proje c t was  the  hor izonta l response  in  addition to 

w h ic h the  pie rs  were  reached to the  bedrock. Inte r face  e lements  were  not  

applie d in  the  s tructure  due  to the  nature  o f  the  me thod e ithe r . T he  we ake ne d 

value s  o f  late ral spr ings  in  the boundary  be twe e n the  cohe s ive  and 

cohe s ionle s s  s oil layers  were  take n into  account according to the  reference 

/4/. T he  uppe r  par t o f the  clay depos it (z =  1 m ) as we ll as the  s lope  cove r  

mate r ia l were  not  cons ide re d because  o f  the  obvious  gap formation and the 

ve ry s mall de fle c tion due  to the  load leve l applie d. Be cause  o f the  latte r  

reason the  e ffe ct o f  s lope  was  not  t ake n into  account e ithe r.

Figure  4 . Spr ing force - de flection re lations .

DEFLECTION

Figure  3. T he  FECM3D- mode l.

ins e ns itivity o f  proble ms  w ith plas tic ity a lgor ithm and ge ne ra lly ve ry rapid 

conve rge nce . T he  mathe matical proble ms  w ith s oil fa lling  into the  gap 

be hind the  pile  whe n de fle cte d hor izonta lly  is a lso avoide d. T he  initial 

geos tatic analys is  s tep fo r  che cking the  stress fie ld compa tible  w ith applie d 

loads  and boundary condit ions  is  not  needed e ithe r . In  the  mode l applie d 

here  the  initial stress s tate was  not  cons ide re d, because  the  e ffe ct o f  it  w ill 

be  e xamine d in  the  fore coming ve rs ions . T he  value s  o f  the  e las toplas tic  soil 

s pr ings  conne cte d to the  pie r  e le me nt node s  are g ive n as spr ing force  - 

de for mation couple s , the  e xample  o f wh ic h in cohe s ionle s s  soil is  presented 

in figure  4. Figure  5 shows  the  de te rmination o f the  s ubgrade  coe ffic ie nt, 

from which the cor re s ponding de fle c tion y is  calculate d. T he  diffe rence  

be twe en the  mod ifie d  va lue  (M M ) and the  tr aditional va lue  (T M) o f 

subgrade  coe ffic ie nt for  fr ic tion soil is  also presented. Figure  6 in  turn 

presents  the  dis tr ibution o f s ubgrade  coe ffic ie nt kh w ith de pth in  fr ic t ion type  

o f soil. In  cohe s ionle s s  s oil the  subgrade  c oe ffic ie nt is  as sume d to de pe nd on 

undra ine d shear  s trength s„ and pile  diame te r  d but  not  o n depth. T he

Figure  5. De te r mina tion o f subgrade  coe ffic ie nt kh.

a ) cohe s ionle s s  soil

b) cohe s ive  soil.
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In  the  F ECM3D- mod e l the  c ubic  soil e le me nts  we re  g ive n the  actual e las tic 

prope rtie s  de te rmine d from s tandard laboratory and "in- s itu"- tes ts . Ne ithe r  in 

this  mode l was  the  initial stress s tate  cons ide re d because  the  e ffe ct o f it w ill 

be e xamine d in the  fore coming ve rs ions . T he  "e ffe ctive  diame te r " o f the  soil 

c o lumn around the p ile  was  take n e gual to dtf =  2 m , wh ic h can be  as sumed 

as  reasonable  because  o f the low load le ve l. Infe r face  e le me nts  were  set 

be twe en the  pile  and soil e lements , a llthough there  is  not  m uc h use  o f them 

in such a low load leve l. T he  uppe r  par t o f the  c lay de pos it  (z =  1 m) as 

we ll as the  s lope  cove r  mate r ia l we re  not  take n into account due  to the 

as sume d gap phe nome non and the  ve ry low  de fle c tion le ve l.

For  both mode ls  the  e ffe ct o f tracks  as a par t o f  the  hor izonta l capacity was  

de te rmine d by conduc ting a s pe cial load test. T he  purpose  o f this  was  m a inly  

to de te rmine  the  fr ic tion be twe en the  ba llas t  and the  concre te  de ck surface . 

T his  res is tance  fac tor  was  then applie d as a cor re s ponding series  o f  nonline ar  

late ral spr ings  acting on the  de ck surface . T he  s tiffne s s  o f  the  de ck surface  

fr ic tion s pr ings  due  to the track- ballas t- sys tem is  de te rmine d as fo llows . The  

spr ing sys tem be twe en the de ck surface  and the  track sys tem was  mode lle d 

w ith two individua l spr ings  (figure  9). Spr ing 1 takes  into account the  

re lation be twe en the  de ck surface  and ballas t a s s uming the  track- sys tem to 

be fixe d. It is  howe ve r  not  fixe d in practice  and thus  an additiona l FEM-  

analys is  was  carr ied out to de te rmine  the  long itudina l s tiffnes s  o f  the  track 

sys tem. Whe n  de te r mining this  s tiffne s s  - wh ic h is  take n into  account with 

the  s pr ing 2 in figure  9 - the  long itudina l res is tance  and the  e las tic  prope rtie s  

o f continuous ly we lde d tracks  were  cons ide re d.

S U P P O R T  4  / S O U T H E R N  P IE R

>  z = 1 0 - d

Figure  6. Dis tr ibut ion of- subgrade  c oe ffic ie nt  kk  w ith  de pth in  fr ic tion 

soil.
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- s h o r t  t e r m  lo a d in g  

- s u«  1 5  k P a  

-  d = 0 ,9 m

Fm = 1 0 1 ,2  kN- -

Fm/2= 5 0 ,6  kN 

k

k h I= 1 5 0 *s ^/ d  =  2 ,5 M N / m : 

p m= 7 , 5 - s u =  1 1 2 ,5 k P a  

^hr /a  F = p - s - d  

P- kh*y

ymfe = 0 ,0 2 2 5 m = 0 , 1 3 5 m

N o d e s  1 0 2

[ k N / m 2]  

O ’,  Pm

khI= 5 1 MN/m3 

MN/m 3

6 5 , 7 5 9 0 2 , 6

7 3 ,2 5 1 0 0 5 ,6

8 0 , 7 5 1 1 0 8 ,5

8 8 , 2 5 1 2 1 1 ,5

9 5 ,7 5 1 3 1 4 ,5

1 0 4 .5 1 6 9 6 ,6

1 1 4 ,5 1 8 5 9 , 0

1 2 4 ,5 2 0 2 1 , 4

1 3 4 ,5 2 1 8 3 , 7

1 4 4 ,2 5 2 1 5 1 , 6

1 5 3 ,7 5 2 2 9 3 , 3

1 6 3 ,2 5 2 4 3 5 , 0

1 7 2 ,7 5 2 5 7 5 , 7

1 8 3 ,0 ] 3 3 8 1 , 8

1 9 4 ,5 3 9 3 6 , 7

LA T E RA L  S P RIN G F ORCE - DE F LE CT ION RE LAT IO N S

N O D E L O W E R  P OINT UP P ER P OIN T

F  [ kN] y  [m] F  [kN] y  [m]

5017 406 ,2 0,110 812,3 0 ,442

5019 452,5 0,082 905,0 0 ,327

5021 498,8 0,078 997,6 0 ,313

5023 545,2 0,075 1090,3 0,301

5025 591,5 0,077 1183,0 0 ,309

5027 763,5 0,035 1526,9 0,141

502 9 836,5 0,039 1673,1 0,155

5031 909,6 0,042 1819,3 0,168

5033 982,6 0 ,045 1965,3 0 ,182

5035 968,2 0,071 1936,4 0 ,287

5037 1031,9 . 0 ,076 2063,9 0 ,306

5039 1095,7 0,081 2191,5 0 ,324

5041 1159,5 0 ,085 2319,0 0,343

5043 1521,8 0 ,033 3043,6 0 ,132

5045 1771,5 0 ,030 3543,0 0,119

Figure  7 . De te r mina tion o f s ubgrade  r eaction c oe ffic ie nt  n,, /4/. Be low  

G W T  n* is  m ult ip lie d  by 0,6. F igure  8. Ex a mple  ca lcula t ion o f late ral s o il s pr ings .
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T he  fr ic t ion s pr ing force  is  e s timated e qual to;

F„ =  M • N,

whe re  N =  a v • A, is  the  we ight o f  ba llas t  laye r  e le me nt. Accor ding  to a 

pa r ticular  load test carr ied out s pe c ia lly fo r  this  analys is  the  coe ffic ie nt o f 

fr ic tion is  take n as jj = I . T he  cor re s ponding de fle c tion in  orde r  the full 

fr ic tion to be  mob ilize d  was  dis cove red to be  about A =  0,5 m m . Due  to the 

arrange me nt o f this  par ticular  ba llas t  load test this  va lue  is  howe ve r  mos t 

e vide ntly s ome what too s mall in  compar is on w ith the  real track ba llas t  

s ys tem thus  le ading to s lightly too s t iff a  va lue  for  the  de ck surface  fr ic tion 

s pr ing 1 in figure  9. T he  e ffe ctive  breadness  o f the  track ba llas t  on the  de ck 

surface  was  taken as 3,1 m. T he  ve r tical pressure  o n the de ck surface  due  

to the  track- ballas t- sys tem was  e s timate d as a v = 10,5 kPa. T he  fully  

mo bilize d  fr ic tion force  on the  hole  area o f  the  de ck surface  was  thus  

e s timate d e qua l to;

F„t ot  =  1.0 • 10,5 kN/ m 2 • 42  m • 3,1 m =  1,36 MN.

T his  was  na tura lly de vide d into po in t  spr ings  ove r  the area o f the  de ck 

surface .

T lie  angle s  o f  inte rnal fr ic tion o f  the  back fill layers  de te rmine d fr om tr iaxial 

tests  are <J>p = 38° and <(>p =  39°, respective ly.

T he  earth pressure  at rest;

p0 =  0,5 • [ (9,8 + 21.9)12 ■ (1 - s in 38°) + (27 ,9  +  47,2)/2

• (1 - s in 39°)]  =  10,6 kPa

- > F0 =  10,6 kN/ m2 • 5 ,6 m • 1,9 m  =  112.8 kN

T he  pas s ive  earth pressure;

P p  = 0,5 • [ (9,8 + 21,9)12 • (1 +  s in 38°)/(l - s in 38°)

+ (27 ,9  +  47 ,2)/2 • (1 + s in 39°)/ (l - s in 39°)]  =  122,1 kPa  

Fp =  122,1 kN/m2 • 5,6 m  • 1,9 m =  1299.1 kN 

T he  cor re s ponding de fle c tion required; 

y? =  0 ,002 • 1,9 m  = 3,8 mm

T he  active  ear th pressure;

pA =  0,5 • [ (9,8 + 27,9)/2 • (1 - s in 38°)/(l + s in 38°)

+ (27 ,9  +  41,2)12 • (1 - s in 39°)/(l + s in 39°)]  =  6,5 kPa 

- > Fa =  6,5 kN/m 2 • 5,6 m • 1,9 m =  69.2 kN 

T he  cor re s ponding de fle c tion required; 

yA =  0,0005 • 1,9 m =  1 mm

C O N T I N U O U S S P R I N G
©

S P R I N G ®

Figure  9. Cons ide r ing the  long itud ina l res is tance  o f  track- sleeper- ballast-

s ys tem.

T he  e ffe ct o f the back fill o f the  e nd plate s  was  cons ide re d by a pplying  a 

numbe r  o f - to avoid loca l ove rs train e ffects  due  to the  use  o f the  

cor re s ponding total s pr ing - nonline a r  s pr ings  acting lo ng itud ina lly  to the  e nd 

o f the  br idge  deck. T he  value s  o f  these s pr ings  take  into  cons ide ra t ion the 

active , initial and pas s ive  earth pressure  s tage  o f the  b a ck fill and were  

de te rmine d according to the  F innis h Code  o f Practice  fo r  Hig hw a y  Br idge s  

/3/. T he  s tiffnes s  o f  the  back fill total s pr ing is  pre sented in  F igure  10b and 

is  de te rmine d as follows .

T he  b ackfill is  cons tructed with two s lightly diffe re nt cohe s ionle s s  mate r ials ;

uppe r  laye r  

Tanu« = 20,01 kN/m 3 

= 16.48 kN/m 3 

D „  =  87,4 % 

w „  =  6,5 %

=> 7 = 18.6 kN/m 3

lowe r  laye r  

Ydmu = 20 ,70  kN/ m3 

Tan,in = 15,89 kN/m 3 

D „  =  88,3 % 

w „  =  8,5 %

=> 19.8 kN/m 3

.  1 kP a  
( t r a c k s y s t e m )

- 2 7 ,9  kP a

S P R I N G

DEFLECTION

y

Figure  10. D e t e r m i n a t i o n  o f  b a c k  f i l l  t o t a l  s p r i n g .

5. RE SU LT S OF  T EST S AN D C O M P A RIS O N  WIT H  F E M- AN ALYS IS  

Ge ne r a l

In  this  chapte r  results  o f  loading  tests are analys e d in  compar is on w ith the 

cor re s ponding FEM- analys is . In  this  context no  a tte mpt has  bee n made  to 

de te rmine  the  hor izonta l capacity e xpe r ime nta lly , but  b oth the  tests  and the 

analys is  s how that the  load leve l (F  =  500 kN) in  compar is on w ith the  late ral 

capacity is  r e la tive ly low.
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C o m p a r is o n  o f de fle c t ions  a n d  lo n g it u d in a l s tifftie s s

Firs t  o f a ll, it  is  ve ry easy to find  out  from the  le s t results  that the 

de fle c tions  ove ra ll due  to the  applie d load appe ar  to be  ve ry s mall. T he  

ave rage  va lue  o f  long itud ina l de fle c t ion at the  s ca ffolding  was  0 ,34  mm. 

Us ing  this  va lue  one  gets  the  long itud ina l s tiffnes s  o f this  pa r ticular  r a ilway 

br idge  e gual to K  =  F/y„. =  0,5 MN/ 3 ,4  • Iff4 m =  1470 MN/ m . T his  va lue  

inc lude s  the  e ffects  o f  s ubs oil, back fill, s tiffnesses  o f pie rs  and the  track-  

s leeper- ballas t- system. T he  compar is on o f de fle c tions  s hows  ve ry c le ar ly that 

the  response  is  h igh ly  influe nce d b y  the  s tiffnes s  o f  the  track- sleeper- system. 

T he  s tiffnesses  g ive n in  figure s  11 - 14 are obta ine d fr om the  additiona l 

FEM- analys is . In  this  s pe cial FEM- ca lculat ion res is tances  o f  track- sleeper-  

sys tem e qual to 7 kN/m and 12 kN/ m and cor re s ponding mo biliza t ion  

de fle c tions  e qual to 0,5 m m  and 2,8 m m  H I we re  used thus  g iving  

s tiffnesses  as follows ;

7 kN/ m 

7 kN/ m 

12 kN/ m 

12 kN/m

A =  2,8 m m  

A =  0,5 m m  

A =  2,8 m m  

A =  0,5 m m

170,5 MN/ m

403.7 MN / m  

223,3 MN/ m

528.8 MN/m

In  the  FECM3 D- mod e l only the  track- s leeper s tiffnes s  e qua l to  170,5 MN/ m 

was  used. T he  s tiffnes s  obta ine d from load tests was  ca lcula te d us ing the 

forces  acting o n tracks  de vide d b y  the  cor re s ponding de fle c tion. As s uming 

the  spr ing 1 presented in  figure  9 to be  real and compar ing  the  tes t results  

w ith  analys is  o f e qua l s tifftiess  o f  track- sleeper- system (F E W3 D) one  can see 

that the scatte r is  re la tive ly high. T his  indicate s  tha t the  s ubs oil spr ing 

s tiffnesses  unde re s timate  the  soil be haviour  in  s uch a low  leve l o f s trains . 

T he  compar is on w ith FECM3 D- mod e l s hows  m uc h more  reasonable  

cons is tency. T he  response  o f  the  F ECM3 D- mod e l is  e ve n more  conse rvative  

than results  o f tests. T his  is  ma in ly  due  to the  e las tic nature  o f the  mode l. 

T he  cor re s ponding compar is ons  w ith FEM- analys is  are pre sented in  figure

11.

K »  5 2 8 , 8 M N / m  F E W 3 D  

K «4 0 3 , 7 M f y f a i  — n  —  

K -  2 2 3 , 3  M N / m  —  / /  —  

K «  1 7 0 . 5  M N / m  — / /  —

--- I------1------ 1------ 1------ 1------ 1------ 1------
0 , 3  0 , 5  0 , 7  0

L O N G I T U D I N A L  D E F L E C T I O N  O F  E N D  P L A T E  [ m m ]

~r~ 
1.1

Figure  12. Compar is on o f long itud ina l de fle ctions  o f  e nd plate .

T he  pe rmane nt de fle c tion in  these tests was  obse rve d to be  ne glig ible  (-  4  

%). No logica l cumulat ive  increase  o f  m a x im um  or  pe rmane nt de fle c tion 

was  dis cove red from test to t e s t  T he  ave rage  transversal and ve rtical 

de fle c tions  from tests a t s caffolding were  yx =  0,07 m m  and y v =  0,05 mm, 

respective ly.

C o m p a r is o n  o f e a r th  pre s s ure s

In  figure  13 are presented the  e arth pressure  change s  due  to the  a pplie d load 

obtaine d from FEM- analys es  and load tests. T he  earth pressure  changes  on 

the  e nd plate  were  obse rve d in three points . As  the  figure  13 s hows , one  o f 

the  transducers  give s  quite  a  diffe re nt va lue  in  compar is on with the  othe r  

two. T his  dis turbance  is  probably caused by a pie ce  o f  s tone  o r  a  cobble  

clos e  to the  transduce r  surface  in  the  backfill. Ge ne ra lly  it  can be  seen that - 

whe n compar ing the  line s  o f  corre s ponding long itud ina l s tiffnes s  o f  track-  

s leeper- system - the  FEM- analys es  (F E W3 D) give s  cle ar ly greate r  va lue s  o f 

pressure  changes  than load tests. T his  is  na tur a lly  due  to the  highe r  value s  o f 

move me nts  in  the  analyses . T he  scatte r  be twe en the  analys is  and tests  is  thus  

s imila r  to the compar is on o f de fle c tions . Ag a in  it  can e as ily be  dis cove red 

the  s ens itivity o f  the s tiffnes s  o f track- sleeper- system to the  response.
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Figure  11. Compar is on o f long itud ina l de fle c tions  at s caffolding.

T he  average  obse rve d long itudina l de fle c tion o f the  e nd plate  w a s y EP =  0 , l l  

mm . T his  indicate s  a  s light  e las tic s hor te ning o f the  de ck e qua l to e d =  (3,40 

- 1,1) • 10-1 m/ 40  m  =  5,7 • Iff®. Figure  12 shows  the  compar is on o f 

long itud ina l de fle c tions  at the  e nd plate . T he  results  o f  this  are quite  s imila r  

to de fle ctions  at s caffolding in  figure  11. Figure  13.
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Figure  14 presents  the c ompar is on o f s train va lue s  in  the  r e infor c ing rebar  o f 

the  s outhe rn bored pile  o f s uppor t 1. T he  obs e rvation po in t  is  o n the tens ile  

s ide  and z =  0,25 m be low the  de ck. T he  c ompar is on shows  that the  s tiffe r  

the  track- sleeper- system is , the  highe r  is  the  va lue  o f s train in the  tens ile  

rebar. T his  is  a ve ry obvious  result because  the  less  the  de ck move me nt is , 

the  greate r  is  the  mome nt created in  jo in t  e le me nt. As  s hown in  the  figure  

14, the s train from load tests e ve n w ith e qua l s tiffne s s  o f  track- sleeper-  

sys tem is c le ar ly less  - an oppos ite  result in  r e la tion to the  de fle c tion 

compar is ons  - than the value  obtaine d fr om the FEM- analys is  (F EW3 D). 

T his  indicate s  a  s malle r  actual b e nding  mome nt than the  e s timated one . T his  

is  unde rs tande able , because  if  the  s ubs oil spr ings  are not  s t iff e nough, the 

ca lcula te d m ome nt  in  the  jo in t  e leme nt is  highe r  than the  real one .

C o m p a r is o n  o f r e in fo r c ing  r e b a r  s tr a ins

S T R A I N  O F  B O R E D  P I L E  R E I N F O R C I N G  R E B A R  (d , = 3 2 m m  )  [ -1 0 " * ]

Figure  14. Compar is on o f s trains  in  r ebar  o f  bore d pile .

6. C ON C LU S ION S

T his  pape r  tends  to present o nly  results  and pr e limina ry  analys is  o f 

obs e rvations  obtaine d from these pa r ticular  full scale  br idge  loading  tests. In  

this  paragraph are s tated the  m a in  obs e rvations  dis cove re d in  this  project. 

T he  compar is ons  s how that quite  clear  dis cre pancie s  e xis t be twe e n the  test 

results  and the  FEM- analys is . T his  obs e rvation is  e s pe cia lly associated w ith 

the  FEW3D- mode l. T he  m a in  reasons  for  this  c an be  lis ted as  fo llows .

T he  compar is ons  o f  results  and analys is  s how ve ry c le ar ly that the 

long itud ina l response  o f  the  br idge  s tructure  is  h igh ly  s ens ible  to the 

long itud ina l s tiffness  o f the  track- sleeper- system. Unce r taintie s  in  

de te rmining this  s tiffne s s , i.e . the  long itudina l res is tance  o f track- sleeper-  

ballas t- sys tem and the  corre s ponding de fle c tion ne ede d for  mo b iliza t io n  o f 

this  res is tance , thus  produce s  a  great deal o f diffic ultie s  to che ck the 

accuracy o f ge ote chnica l mo de lling  the  s ubs oil.

T he  s catte r  in  the  pre ce ding c ompar is ons  is  also s ome what influe nce d by the 

accuracy o f me as ur ing e quipme nt. T his  matte r  is  mos t e vide nty e mphas ize d 

by o f the  lo w  s train leve l occurred in this  pa r ticular  case , due  to w h ic h the 

s igna ls  mus t  be  r e markably a mplifie d . T he re fore  a ll me as ur ings  s hould have  

double  ce rtainty in  orde r  to ensure  the  r e liability  o f me as ur ings . T his  is  not 

howe ve r  a lways  pos s ible  because  o f  the  large  a moun t o f  infor ma tion to be 

recorded and the  limite d numbe r  o f s imultane ous ly active  channe ls .

The  type  o f pr inc ipa ls  used in  the analys is  (FEW3 D- mod e l) are bas icly 

created for  greate r  s train leve ls  than dis cove red in these  tests. In  a ddit ion  to 

this  the  init ia l stress s tate was  not take n into account in  e ithe r  o f  the  FEM-  

mode ls . For  these reasons  the  long itud ina l de fle c tions  and thus  also the 

response  o f  e nd plate  earth pressure  appe ar  to be  cle ar ly greate r  than 

obse rve d values . T he  cons titutive  ide a liza t ion o f soil be haviour  used in the 

FEW3D- mode l thus  assumes  the soil not s t iff e nough in the  s train level 

take n place  in these tests. T he  results  o f  the  F ECM3D- mode l s how in  turn 

m uc h bette r  agre ement w ith tests. T he  analys is  howe ve r  serves as a s tarting 

po in t for  dee pe r  theore tical basis .
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jointle s s  br idge  s tructure  w ill be  made .
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