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SYNOPSIS: The CRItical Slip Surface or CRISS method has been developed lo calcúlale the safely factor for the overall stability of slopes from finite element 

stress analyses. In the simple version a multi-linear failure surface is propagated in both directions from an internal point of high mobilised stress level. For each 

segment of the surface the slope giving the lowest value of local safety factor is sought. In the extended version a complete circular or mulli-linear failure surface 

is required as input. The safety factor for this surface is calculated and the geometrical parameters are then adjusted by a pattern search optimization routine until 

the surface giving the minimum F is found. Examples are given to demonstrate lhat the new method gives values of safely facior comparable with (hose obtained 

from the best limit equilibrium methods or other finite element approaches.

INTRODUCTION (a) F based on stress level

The finite element method has been applied lo stress-slrain analyses of slopes 

and earth/rock dams with considerable success, though the calculation from 

these stresses of safely factors against shear failure has often been performed 

in a relatively simplistic manner. Attempts to convert F.E. stresses into 

stability calculations have been made by many researchers, e.g. Kulhawy et al 

(1969), Wright et al (1973), Zienkiewicz et al (1975), Donald et al (1985), 

Donald and Giam (1988), Yamagami and Ueta (1988), using a variety of 

approaches and definitions of safely factor. In the present paper a method is 

presented by which the safety factor against shear failure along any arbitrary 

surface may be calculated readily from F.E. stresses, for three definitions of 

F. A simple algorithm for selecting the critical shear surface is then described, 

followed by an improved version in which the critical failure mechanism is 

determined automatically, using a multivariable unconstrained optimization 

routine. Several example problems are presented with comparative analyses 

by the proposed method, conventional limit equilibrium methods and the F.E. 

based Nodal Displacement Method. With the F.E. methods there is no 

requirement to assume F = constant around the failure surface, no assumptions 

are needed regarding side forces between soil blocks or slices and any piece- 

wise linear failure surface may be used.

DEFINITIONS O F F

The results presented have been calculated for three reasonable definitions of 

safely factor, the first two of which have some currency in the literature. In 

limit equilibrium analyses the safety factor is normally based on soil shear 

strength and is given by

E  Al

F =
a v a ilab le  s h e a r  re s is ta n ce  _ s 

m o b ilised  s h e a r  s tre s s  t
(1)

There are several ways in which average stresses around a slip surface may be 

estimated, leading to ihe following definitions:

(b)
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w h e re  ih e  s tre s s  level o r  m o b ilis ed  s tren g th  is  g iv e n  by
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and Al is the length of a segment of the failure surface. Ff e i is 

essentially the inverse o f a weighted average stress level along the 

length o f the slip surface. The value of o 3' is assumed the same for 

the mobilised and failure states.

F based on shear stress

£  ( c ' + o ' tan <f/) Al 

E  (t  Al)
(3)

This definition is closest to that of conventional limit equilibrium 

methods. In equation (3) o ' and x are the normal and shear stresses 

acting on segment Al. The value of o ' is assumed to be the same in 

the mobilised and failure states.

F based on strength weighted stress level

E  ( c ' + o'Man $ ')  Al

E  -  1____ —  ( c ' + o ' tan $ ') Al

(o', -  o',)t

(4)

This definition acknowledges that for stress level calculations a strong 

soil layer makes a proportionately larger contribution to stability than 

a weak soil layer (Donald el al, 1985).
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THE CRISS APPROACH where L = total length of failure surface.

Most early attempts to calculate safety factors for slopes from F.E. stresses 

used an assumed failure surface, generally circular, and either Ff ei or FFE2. 

Extensive trial and error calculations were necessary to find the critical surface 

yielding the minimum safety factor. Obvious extensions to this approach 

include non-circular slip surfaces and automatic search routines to attempt lo 

find the global minimum safety factor. Giam and Donald (1988) presented the 

program CRISS (CRItical Slip Surface) as an effective and systematic 

procedure for obtaining ihe critical slip surface from a known stress 

distribution, with simultaneous determination of the minimum safety factor.

The principle of CRISS is illustrated in Figure 1. Starting from a point of 

high stress level, P, a failure surface is propagated to the top and bottom of 

the slope. The slope is divided into a number of stages, for each of which the 

inclination of the possible failure surface is incremented in 1° steps. The 

factor of safely against shear failure is calculated for each incremented linear 

segment until a minimum value is found for that stage. The process is then 

repealed until the failure surface daylights in the crest and loe regions. 

Several positions of the starting point P should be used to find the global 

critical surface.

Note that equations (7) and (8) may be writlen in various ways lo reflect the 

three chosen definitions of safety factor.

Fig. 1. Simple search scheme

A typical siage and segment are shown in Figure 2. The segments are 

normally divided into five intervals and stresses calculated at the control points 

in the centre of each interval. The stresses o 'u , o 'yy and x'xy at the control 

points are determined by interpolation from the calculated stresses at ihe four 

closest integration points in the finite element mesh. Normal and shear 

stresses are calculated from:-

Fig. 2. A stage segment - details

O PTIM IZA TIO N  ROUTINES

Wedge Stability Analyses

The use of multivariable unconstrained optimization algorithms in selecting the 

critical failure mechanism for wedge-type stability analyses has been discussed 

in some detail by Giam (1989). Examples of a range of stability calculations 

have been presented by Donald and Giam (1990), (1992), demonstrating the 

power of a number of optimization approaches in seeking oul efficiently the 

mechanism leading to the lowest safely factor.

In the last decadc many non-linear programming approaches have been applied 

in soil mechanics, all assuming a unimodal objective function, G (Fig. 3), and 

therefore frequently requiring several initial trial failure surfaces to ensure a 

high probability of capturing the global minimum safely factor. Dynamic 

programming methods have been used by Baker (1980) and Yamagami and 

Ueta (1986), (1988), but although they avoid the unimodality restriction and 

follow a rapid multi-stage strategy for optimization, they are not derivative 

free (direct search) algorithms and are more difficult to program than the non­

linear programming methods. Giam (1989) compared five direct search 

approaches - Simplex, Hooke and Jeeves, Rosenbrock, Powell, Pattern Search 

-applied to multi-wedge analysis programs GWEDGEM and EMU, before 

deciding that the Pattern Search method (Hooke and Jeeves (1961)) was the 

best approach for problems with up to 50 geometric variables requiring 

optimization.

Extended CRISS Method

°1 = J (°y, + °L) -  J (°n - °«) cos 2a - T.> sin 2a (5)

T„; = L  (o '( -  o ',)  sin 2 a  + xi( cos 2 a

leading lo a safely factor for the segment of

E  ( c ' + o ', tan ip') A1

(6)

F =
E  ( t  )  A l

(7 )

The overall safety factor for the complete multi-linear failure surface is then 

given by

J  ( c ' + o* tan <)>') d L

I  T"

(8)
d L

The success o f the Pattern Search optimization algorithm with multi-wedge 

analyses encouraged its application to an extended version of the CRISS 

approach. Two types of failure surface were considered - circular, with only 

three variables x,y and r to be optimized and non-circular, approximated by 

an n-segmeni multi-linear surface, with 2n geometric variables. These surfaces 

are shown in Figure 3 and the only difference from wedge analyses is lhat 

internal shearing interfaces are not included in the calculations.

(*.v)

Fig. 3. Formulation of problem for optimization
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Formulation for Optim ization Exam ple 2

Each segment o f the failure surface is divided into a number of intervals, 

much as described earlier for each siagc line in the original CRISS program. 

The normal and shear stresses at the central control points for each interval are 

again interpolated from the four nearest integration points, using equations of

i he form

Figure 5 shows a three layer profile for which the accepted referee value of 

safety factor is F = 1.39 (Donald and Giam (1989)). The results are 

summarised in Table 2. Analysis by the Nodal Displacement Method (N.D.M.

- F.E. based) gave F = 1.39 (Giam (1989)).

o „  = a, + a2 x + a , y + a4 xy 

where x,y = coordinates of integration points 

and a; = interpolation coefficients

(9) Table 2. Comparative Factors of Safety; Example 2

Equations (5) to (8) still apply and a value of F for the initial trial surface may 

be evaluated readily. The Pattern Search routine is then applied to the trial 

surface and the geometric variables adjusted by small steps until the minimum 

F is found, using any chosen definition o f safety factor (equations (2) to (4)). 

Several different initial trial surfaces should be used to expose local minima.

EXAMPLES

The finite clement stress calculations for all examples presented were made 

using the Cambridge University program CRISP, with some minor 

modifications to calculate the appropriate stress components needed for the 

various definitions of F. Gravity turn-on, built-up and excavated slopes were 

examined, with the stability investigated by CRISS, limit equilibrium and 

nodal displacement methods.

Example 1.

Figure 4 shows a simple slope for which the safety factor is 1.00 (Donald and 

Giam (1989)). Table 1 summarises the results from the extended CRISS 

analyses, with both built-up and gravity turn-on values exhibiting excellent 

accuracy and agreement. The values for the excavated slope are slightly high, 

a trend also found by Brown and King (1966).

Fable 1. Comparative Factors of Safety; Example 1

Factor of Safely

Multi-linear

Type Ff ei Fpe2 F,f.,

Built-up 1.001 1.001 1.001

Gravity lurn-on 1.000 1.003 1.000

Excavation 1.082 1.044 1.044

The most accurate value of F in Figure 4 arose from a seven segment 

extended CRISS failure surface, at 1.001 slightly better than a value of 1.004 

from a Bishop circular analysis, equal to that from a CRISS simple (original 

version) analysis. A circular surface CRISS analysis gave F = 1.015. The 

critical failure surfaces are seen to be in good agreement.

Factor o f Safety

Multi-linear Circle

Type Fm f FE2 Ffe, FFE2

Buill-up 1.29 1.32 1.26 1.35

Gravity turn-on 1.32 1.36 1.26 1.39

Excavation 1.53 1.41 1.51 1.43

All methods tabulated show an increase in F from built-up to excavated slopes, 

with circular failure surfaces generally giving higher values than multi-linear 

ones. The average F[;h: for the six values in Table 2 is F = 1.38, very close 

to the limit equilibrium referee value of 1.39. The FFE2 definition is closest to 

limit equilibrium definitions and reasonable agreement in F values would be 

expected. The differences between Ffe: values for circular and non-circular 

surfaces are not great and it is likely that the non-circular values are a little 

low because no shearing on internal interfaces has been included in the 

analysis. The values based on mobilised stress ratio definitions o f F vary 

somewhat erratically, casting some doubt on their reliability. Physical reasons 

for some of the differences have been discussed by Kulhawy ct al (1969). The 

critical failure surfaces in Figure 5 for multi linear CRISS analyses are seen 

to be in close agreement.

Soil 1 c = 0 l<Pa, <|) = 38°,

Soil 2 c = 5.3 kPa, tp = 23°,

Soil 3 c = 7.2 kPa. = 20",

Fig. 5. 3-layer slope

y = 19.5 kN/m 

v = 19.5 kN/nv 

v = 19.5 kN/nr

Example 3

c(kN/m2) 1 <f>(deg.) 7 {kN/m3)

3.0 1 20.0 20.0

The final example to be presented. Figure 6, has been detailed to produce a 

highly non-circular failure surface, through the inclusion o f a thin, weak layer 

at depth (Donald and Giam (1989)). The referee value, from the ACADS 

report, is F = ,1.26 and an Nodal Displacement Method analysis gives F = 

1.25. The soil properties are

Main soil c’ = 28.5 kPa, <p’= 20°

Weak layer c' = 0, $'= 10°

Fig. 4. Example 1 - Simple slope

CRISS analyses gave:-

extended CRISS 

simple CRISS

F,.-,.; = 1.25 (for built-up slope) 

Fjl|;: = 1.30 (for built-up slope)
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1. Simple search, FFE2 = 1.31

2. Extended CRISS, FFE2 =1.25

3. Limit Equilibrium, FFE2 = 1.27 (GWEDGEM)

Fig. 6. Example 3 - slope with weak layer

The multi-wedge limit equilibrium program GWEDGEM yielded F  = 1.27 

and the extended CRISS and GWEDGEM analyses predicted almost identical 

failure surfaces, though the simple-search CRISS surface diverged somewhat 

in the slope above the weak layer. The values of F for extended CRISS, 

N.D.M., GWEDGEM and the ACADS referee value cover a narrow range 

from 1.25 to 1.27, according high credibility to all methods.

DISCUSSION

The above examples demonstrate the adequacy of the search schemes 

described for selecting critical failure surfaces in slope stability analyses, both 

for circular and highly non-circular surfaces. The extended CRISS analysis 

also predicts failure surface geometries which compare well with those derived 

from limit equilibrium analyses. The simple search scheme works adequately 

for straight forward problems, it requires no trial failure surface and it is 

computationally efficient. However, it cannot guarantee a good optimal 

solution for complex problems, for which a multi-variable unconstrained 

method, such as the modified Pattern Search, is recommended. Using the 

extended CRISS approach a trial failure surface is required as input, but the 

power o f the optimization routine is such that the trial surface need not be 

chosen with great precision. However, for speedy convergence to an accurate 

result it has been found advisable to base the initial trial surface on that 

predicted by some form of limit equilibrium analysis.

The stress history of the slope obviously has an influence on the safety factor. 

For slopes on the point of failure, such as Example 1, the effect is less 

noticeable, with built-up and gravity turn-on analyses giving F = 1.00, though 

the excavated slope value is a little higher at 1.04 to 1.08. When F is 

significantly greater than 1.00, as for Example 2, the differences between built- 

up and gravity turn-on remain insignificant, but the excavation analysis gives 

values of F  up to 0.25 higher. As limit equilibrium analyses make no 

allowance for stress history, the question arises as to what situation they are 

approximating. From the admittedly limited evidence presented here it is 

reasonable to claim that limit equilibrium analyses agree most closely with 

gravity turn-on or built-up analyses, using the FfE2 definition. If the indicated 

trends concerning excavated slope analysis are correct, then limit equilibrium 

analyses should generally be conservative for excavated slopes, though more 

work is obviously required to prove the point.

The role of Ffei and Ffe, is less clear. FFE] could be regarded as a safety 

factor against the initiation of local failure and could therefore be of 

significance in soils subject to progressive failure, with Ffe, serving the same 

purpose for soil profiles with widely varying strength properties. With present 

data it is impossible to make more definite recommendations.

CONCLUSIONS

Two versions of the CRISS method have been presented for deriving values 

of safety factor from finite element analyses of slopes. The simple method is

adequate for straightforward problems, but for more complex slopes the 

extended CRISS program, with automatic search for.the critical failure surface, 

is recommended for improved accuraoy. Values o f F derived from CRISS 

analyses agree well with limit equilibrium and Nodal Displacement Method 

values, justifying the applicability and accuracy of the method.
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