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SYNOPSIS: The results presented are from the authors’ ongoing research into applications o f artificial neural networks and fuzzy theory to geotechnical 

engineering. The focus o f  this paper is on the use o f  artificial, or more properly, computational neural networks as tools—from a practical engineering 

perspective—for modeling and data analysis. Neural networks can be used to estimate functions from sample data as can statistical techniques. The major 

difference is that statistical approaches require guessing as to the functional dependency of outputs on inputs whereas neural systems do not require articulation 

o f  any such physical or mathematical model. Neural networks can recognize ill-defined patterns without an explicit set o f  rules; they adaptively infer it from 

sample data. Published data is used to demonstrate the comparative ease with which a neural network can be trained to perform a variety o f tasks involving 
modeling and prediction.
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IN TR O D U CTIO N

Traditional modeling and analysis teaches that natural phenomena can be 

teased apart to reveal underlying principles, and that those principles explain 

the behavior o f  everything from individual particles to large masses o f  soil. 

This reductionist approach is not the only valid way o f  investigating the 

world. One does not always have the luxury o f  an available model which 

accurately reflects real phenomena; this is especially true when the material 

is natural soils.

A substantial part o f  geotechnical design relies upon observation o f the 

behavior o f geotechnical structures under similar conditions. Geotechnical 

engineers apply experience and judgement in their evaluations in an attempt 

to characterize the parameters o f interest for the entire soil mass under 

consideration by extrapolating from a few observations o r from laboratory 

testing. The inherent empiricism in many design procedures needs to be 

clearly appreciated.

Additionally, despite the great improvement in techniques for modeling the 

behavior o f soils, there are other difficulties. One o f the greatest lies in the 

inherent variability o f  geotechnical data itself, which is large even in 

nominally uniform soil masses. This variation causes a scatter in the results 

which is difficult to correct. Applying too many refinements and corrections 

only serves to make analysis complicated and may be o f doubtful value.

Due to the complexity involved, probabilistic modeling requires significant 

data manipulation and placement o f restrictive constraints on the type and 

distribution o f d a ta - in  order to meet the statistical assumptions o f  the model 

being employed. Parameter free modeling may work better but the standard 

procedures are difficult to use, time consuming and cumbersome, and do not 

always result in tractable problems.

It is reasonable to state that expert geotechnical engineers learn to detect 

patterns o f  behavior and match them with behavior they have seen earlier. 

The same is true in using statistical correlations and/or models to characterize 

the relationship o f  one or more parameter o f interest to that o f others. This 

is essentially a problem  o f pattern recognition where a pattern can be thought 

of as an example or model, i.e ., something which can be copied.

The task may then be stated as an attempt to develop a set o f  automated 

procedures which perform the following two-phase task:

(a) Training or learning phase — learn to classify correctly when presented 

with a series o f data sets with known classifications; and

(b) Generalization or prediction phase — when presented with a previously 

unseen set o f  data, will indicate die class to which the new data set most 

likely belongs.

In other words, the system should have the ability to recognize a pattern or 

patterns—based solely on given data (observational or measurements). In 

mathematical terms, this entails the learning o f  a mapping between an input 

space and an output space, such that the mapping generalizes properly when 

applied to new inputs.

Artificial neural networks and fuzzy sets

An artificial neural network consists o f  a group of identical neurons— 

processing elements, loosely based on biological neurons, which receive an 

input and produce an output using a non-linear transfer function—arranged in 

interconnected layers. Among the many possible neural architectures and 

training methods described in the literature, layered feed-forward networks 

with supervised learning using backpropagation have been selected as those 

best suited to data analysis tasks o f the type most common in geotechnics 

(Agrawal, 1992). In error backpropagation, learning is accomplished by an 

iterative procedure where the network steps through weight space to minimize 

a given error function. Such a net can leam  a function given example data 

from specific occurrences. The standard backpropagation algorithm has been 

modified and implemented in a general computing environment. GIRJAAL, 

the neural-fuzzy software package developed for this work, is used in all 

cases presented in the subsequent. The focus o f  this paper is on applications 

and thus no further details o f  network architecture and training methods are 

given. Detailed explanations o f the methodology used and the operational 

algorithm can be found in Agrawal (1992).

Before presenting the application examples, an additional comment is 

appropriate. In classification/recognition tasks, separation into distinct classes
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is not always possible, or indeed desirable. Available tools however, such 

as the standard classification methods o f discriminant analysis and logistic 

regression, do not allow for, classification with incomplete matches, i.e ., a 

given object is not allowed to belong to more than one class and is classified 

as a member o f a particular group with an associated probability o f  misclassi- 

fication. There is no concept o f gradual change o f  class boundaries; where 

an object may share the properties o f more than one class. Further, it is 

necessary to account for the ambiguity (as distinct from randomness) inherent 

in geotechnical data analysis. Probabilistic methods deal only with the 

uncertainty reflected by randomness. Both o f the preceding shortcomings are 

properly handled by the use o f fuzzy set theory. Kosko (1992) has shown 

that fuzzy sets and neural networks share the same state space so that a neural 

network automatically implements fuzzy classification.

A PPLICA TIO N  EXAM PLES

The two examples, chosen to demonstrate the ability o f  the procedures to 

handle different problems, are:

(a) parameter estimation — interpreting the network output in terms of 

continuous variables wherein drained strength parameters are estimated 

without the need for the user to articulate a model; and

(b) modeling — grain-size distribution curves are modeled by showing that 

the network can estimate D x  based on given values o f  D 10, £>„, and % 

fines content in the sample.

Model free estim ation o f drained strength  param eters

The available input data consists o f 22 sets o f  results from  laboratory testing 

o f field compacted samples o f  silty clay and are taken from Altschaeffl et al.

(1987). Each data-vector consists o f four measurements—dry density, 

effective stress strength angle and intercept, and water content. The problem 

can be defined as follows;

Fig. 1. Modeling 4>' and c' — error during training
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Measured <p’ (degrees)

•  Develop a model to estimate drained strength parameters, <#>' and c ', from 

measured dry density (7 J  and moisture content (Wc).

It is important to recognize some of the contrasts between a neural network 

based procedure and regression correlations to model <t>’ and c'. The two 

strength parameters describe different aspects o f the same soil property, and 

hence should be seen as two aspects o f the same pattern. In other words, a 

particular pair o f the input parameters, y d and Wr, should produce a particular 

<t>‘ - c' regression pair, but a separate statistical correlation is needed to model 

each of them. On the other hand, a single neural network is able to model 

both and c '. Additionally, developing a good regression correlation 

involves trying out various parameter combinations until a good fit is 

achieved. This is a trial and error procedure which can become very time 

consuming. Further, assumptions have to be made concerning the interre­

lationships between various parameters and the distributions o f  these 

parameters. No such assumptions are required for developing a neural 

network based model. Selecting groups o f parameters to be used is also not 

needed with a network and this in turn obviates the need for any preprocess­

ing of the data. The data is presented, as is, to the network which automati­

cally leams to model the input-output relationship (if any) by adapting its 

weights and biases. Once training is complete, the network can be used to 

estimate the drained strength parameters for a given pair o f  dry density and 

moisture content measurements.

Training is done using a 2-5-2 network (a three layer network with 5 hidden 

nodes and two each of input and output nodes). The available data is 

partitioned into odd and even numbered sets—based on the numbering in the 

available data tabulation. Two cases are considered: Case 1 — all odd 

numbered samples are used for training and the even numbered data are used 

to test the predictive ability o f the trained network; and Case 2 — the network 

is trained using even numbered data and tested using odd numbered data. In
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Fig. 2. Modeling and c' — results o f Case 1

each case, the network is trained using 11 sets o f  input-output data vectors 

and the trained network is used to predict 0 ' and c ' values for 11 sets o f data.

Figure 1 shows a typical error plot during training. The network converges 

to a minima in less than 1000 iterations. Further iteration does not reduce the 

error in any significant degree. Similar results are obtained with various 

combinations o f starting network parameters. Figure 2 shows typical scatter 

plots o f predicted versus measured values for <t>' and c '. The rms error for 

the prediction of the strength intercept is 2 .4  kPa and 3 .0 kPa for Case 1 and 

Case 2, respectively. The rms error for the prediction o f  the effective-stress
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strength angle, 0 ',  seems high (1.74°) in Case 1, but a look at the corre­

sponding scatter plots shows that most o f  it is contributed by one outlier (Data 

pair no. 20  in the original set) and if its contribution is neglected, the rms 

error reduces to approximately 0.65°. That one sample is causing the high 

error could also be deduced by studying the error tracks as in Figure 1. The 

maximum error track for <t>' falls to a low level when no. 20  is not part o f the 

training set (Case 1), whereas the corresponding error track in Case 2 settles 

down at a relatively higher level. The results o f statistical analyses also show 

that the error in estimating 4>' for sample no. 20  contributes die most to the 

error.

The results o f developing a correlation, for Case 1 data, using linear regres­

sion are also shown in Figure 2. The estimated (odd data) and predicted 

(even data) values for 0 ' and c ' are nearly the same as those obtained using 

a neural network. The results o f  network training and prediction are 

marginally superior.

As the final step, the entire set o f available data vectors is used for training 

another 2-5-2 network (Case 3). The starting network parameters are the 

same as in the preceding cases. The results are presented as Figure 3. The 

error plot o f  Figure 3 shows that the network converges to a minima within 

500 iterations and the reduction in error with further iterations is marginal. 

Similar results were obtained with different combinations o f starting weights 

and values for the gain and momentum parameters. This implies that there 

is a distinct pattern that the network is learning to recognize. Figure 3 also 

shows the scatter plots o f estimated vs. measured values for <t>' and c '. The 

rms error for the strength intercept is 2.2 kPa. Again, most o f the strength 

angle rms error comes from the single outlier as discussed earlier and if its 

contribution is neglected, the rms error is less than 0.5°.

Estim ating Da  based on 0 ,0, D „  an d  % fines

Grain size distribution data for material dredged during construction o f  an 

underwater berm in the Beaufort Sea was also studied.

Fig. 4. Estimating Dx  — results with all data

Each dala-vector has four components (D „, D 10l % fines and D»). There is 

a total o f 80 data-vectors available. The sample data is split into two groups 

for trial runs. Case 4 consists o f the odd numbered data (40) being used for 

training the network and Case 5 uses the remaining 40 for training.

Training is done using a 3-5-1 network (a 3-layer network with 3 input nodes, 

5 hidden nodes and 1 output node). In each of Cases 4 and 5, the network 

is trained using 40 sets o f input-output data vectors and the trained network 

is used to predict D x  values for the remaining 40 sets o f data.

The networks converge to a stable minima (as evidenced by the average and 

rms error tracks) in about 1500 iterations in both cases. Further iteration 

does not reduce the error in any significant degree. The estimated/predicted 

value of D x  has marginal difference from the measured value and, more 

importantly, the same estimated and predicted final value o f  Ds  results for 

a particular data vector when it is and when it is not part o f  the training 

sample, respectively.

The results o f these two trial runs provide confidence that the chosen network 

has been able to learn the pattern/model such that when given the values of 

£)„, D l0 and % fines for a similar sand, the network can predict D a .

As the final step (Case 6 ), the entire set o f  available data vectors is used for 

training a network. The starting network parameters are the same as those 

for Cases 4  and 5 above. The error plot o f Figure 4 shows that the network 

starts moving towards a minima almost immediately and stabilizes within 

3000 iterations. Iteration is continued until the maximum error falls below 

the specified normalized error o f  0.1 (=15/im) at approximately 5800 

iterations. The scatter plot o f  Figure 4 shows the predicted vs. measured 

values for Dx . The root o f  the mean squared error is 6 /xm and the average 

error is less than 5pm.
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The purpose o f the preceding example is not to argue for the need to be able 

to predict one grain size parameter based on measurements o f others but more 

to demonstrate the feasibility o f  training an artificial neural network and then 

using the trained network to gain the ability to estimate one (or more) related 

parameters given the measurements o f  some of the others. Having a trained 

network available allows one to start with those parameters which are easier 

to measure and generate the values for those which are not easily measured.

CONCLUSIONS

The procedures that have been demonstrated are very simple to use. They 

are mathematically rigorous and the results indicate that they can be of 

enormous use in modeling ill-understood phenomena. They are also easy to 

incorporate into routine work and if regularly used can result in substantial 

improvement in modeling and forecasting soil behavior.

In comparison with various classic techniques (such as regression and 

discriminant analysis), the more powerful neural network formalisms have an 

advantage in automatically being able to learn and generalize from  examples 

without knowledge o f  rules. Additionally, in cases where the available data 

involves vague parameters, the accuracy can significantly exceed that of 

classical statistical methods.

In addition, it is much more straightforward to develop a trained network than 

it is to develop an acceptable model using standard methods. Artificial neural 

networks are a promising technique for developing models since they learn 

adaptively with minimal external intervention.
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