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SYNOPSIS

Swell te s ts ,  in  which the  f u l l  s tress s ta te  was known, were performed on an expansive Black Cotton s o il from Kenya. 
The re s u lts  are used to  exp la in  d iffe re nce s  observed using th ree standard procedures in which on ly the v e r t ic a l stress 
is  known. F urther data is  used to  show how the i n i t i a l  con d ition  o f the sample can a ffe c t the s o il behaviour during 
the te s t .

These fin d in g s  are used to  pos tu la te  a method o f p re d ic tin g  the behaviour o f an unsaturated s o il by inc lud ing  
q u a n tita t iv e ly  the e f fe c t  o f the m ic ro fa b ric .

INTRODUCTION

There have been many claim s regarding the c o rre c t choice 
o f labo ra to ry  te s t  procedure fo r  es tim a ting  the magnitude 
o f swell th a t might occur in the f ie ld .  I t  has long been 
recognised th a t use o f the th ree  's tandard ' procedures 
leads to  th ree d i f fe re n t  measured swell values in  the 
la b o ra to ry . Several authors have presented data showing 
th is ,  e .g . Brackley (1975) and Justo e t a l (1984).

In a d d itio n  to  the problem o f procedural e ffe c ts  is  the 
comparison w ith  f ie ld  da ta. I t  is  o ften  found th a t the 
la bo ra to ry  te s t  procedures ove rp red ic t the f ie ld  v e r t ic a l 
s t ra in ,  but i t  must be noted th a t the changes in  the 
s tress and suction in the f ie ld  are ra re ly  known, 
although simple methods o f suction  measurement in  the 
f ie ld  are becoming a v a ila b le  ( C r i l ly  e t a l 1991 and 
Gourley and Schre iner 1992). I t  is  also tru e  th a t the 
i n i t i a l  s tress and suction  are gene ra lly  not known in the 
la b o ra to ry .

One o f the fundamental requirements in engineering is  the 
a b i l i t y  to  re la te  deform ation to  stress change. W ithout 
th is  a b i l i t y  we can not hope to  make reasonable 
p re d ic tio n s  o f engineering performance. In order to

achieve th is  a b i l i t y  we must make measurements o f both 
s tress and deformation to  form ulate a re la t io n s h ip  which 
can then be used in design o r an a lys is .

STANDARD PROCEDURES

Three standard te s t  procedures fo r  p re d ic tin g  swell have 
been in  use fo r  many years and are sumnarised by 
S chre iner and Burland 1991). The types o f te s t  and 
o r ig in a l sources are:

Procedure 1 Swell fo llowed by conso lida tion

This type o f te s t ,  o r ig in a l ly  developed fo r  studying 
co llapse , was described by Jennings and Knight (1957). 
I t  has been w idely used in expansive s o i l te s t in g , and 
has been m odified over the years, most recen tly  by 
Jennings e t a l (1973). The changes in v e r t ic a l to ta l 
stress and void r a t io  are shown in F ig . 1a.

Procedure 2 Swell under constant v e r t ic a l stress

This te s t  type is  described by H o ltz  and Gibbs (1956) 
and is  i l lu s t ra te d  in F ig . 1b.

___ Procedure 1 Procedure 2

suction decrease

(a) a.

F ig . 1 Standard te s t  procedures

(b)
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Procedure 3 Swell pressure fo llow ed by rebound

This form o f te s t  was recommended by S u lliva n  & 
McClellanc (1969) and is  i l lu s t ra te d  in  F ig . 1c.

STRESS STATES

The possib le  ra d ia l stresses a t the end o f the sw e lling  
stages o f these procedures have been discussed p re v io us ly  
(Schre iner 1987).

A f te r  sw e lling  one7dim ensionally from A to  B in Fig 1a, 
at constant appliea stress ov , the ra d ia l e f fe c t iv e  
stress o i w i l l  tend towards the passive l im it  Kp.Oy since 
the sw e lling  process involves a reduction in s tre ss . As 
loading from B to  C takes place the stress r a t io  w i l l  
tend towards K0 and the ra d ia l e f fe c t iv e  s tress w i l l  
approach K0 . oyC.

In co n tra s t, in  F ig . 1b the sample is  allowed to  swell 
from F to  G under ovc and the f in a l  e f fe c t iv e  stress 
w i l l  tend towards Kp. <jyC. Thus we see th a t the stress 
paths and f in a l  e f fe c t iv e  stress sta tes fo r  the two te s ts  
are very d i f fe re n t .

TERMINOLOGY

I t  has been common to  express the stresses in unsaturated 
s o il labo ra to ry  te s ts  in terms o f the pore a i r  pressure, 
the  pore water pressure and the to ta l s tre ss . This has 
been improved fo r  th is  paper by using atmospheric a i r  
pressure as the reference pore a i r  pressure. Where, in  a 
labo ra to ry  te s t ,  the pore a i r  pressure is  ra ised above 
atmospheric pressure by an amount Ua, the  stresses used 
in  th is  paper a re :-

oav = the to ta l v e r t ic a l o r a x ia l stress a t a pore
a i r  pressure equal to  atmospheric pressure, 

= (ov -  Ua)

oar = the  to ta l ra d ia l stress a t a pore a i r
pressure equal to  atmospheric pressure 

= (« r '  ua)

Uaw = the  pore water pressure a t a pore a i r
pressure equal to  atmospheric pressure. I t  
is  equal in magnitude, but o f opposite s ign, 
to  the suction 

= (Uw -  Ua)

Pa = (°av + 2oa r ) / 3

These stresses are cons is ten t w ith  the to ta l stresses 
and pore water pressure th a t would e x is t  in  the  f ie ld .  
The to ta l  stresses, oav and aar , are re fe rre d  to  as 
the applied s tresses, as these are the stresses th a t 
would be applied to  o r by the s o il in  the f ie ld  and in 
the te s t  apparatus. I t  is  equ iva len t to  expressing 
saturated s o il te s t  data w ithou t inc lud ing  the elevated 
pore water pressure in  any o f the stresses.

APPARATUS

The standard swell te s ts  are performed in standard 
oedometers. These perm it de term ination o f ov and the 
void ra t io  on ly . In order to  understand the te s t  
procedures and the re s u lt in g  s o il behaviour p roperly  we 
must know a l l  o f oav, oa r , Uaw and e throughout the  
te s ts .

The oedometer used fo r  the te s ts  described in th is  paper 
is  shown in F ig . 2. I t  has a f in e  pored ceramic p la te  in 
the base to  perm it the use o f an elevated pore a i r  
pressure o f up to  1500 kPa and i t  has a load c e l l mounted 
in  the oedometer w a ll to  measure the ra d ia l applied 
s tress  (Schre iner 1988, Schre iner and Burland 1987,

1991). D ire c t measurement o f the ra d ia l applied s tress, 
oa r , is  achieved by applying the elevated pore a ir  
pressure w ith in  the sample and w ith in  the «load c e ll 
chamber.

SOIL TYPE

The s o il used in  these te s ts  is  a h ig h ly  expansive Black 
Cotton s o il from the A th i R iver p la in s  a t km 68 on the 
Nairobi-Mombasa road. S o il p ro pe rties  are lis te d  in 
Table 1 and the s o il p r o f i le  is  shown in F ig . 3.

\
\

\
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F ig . 3 T r ia l p i t  p ro f i le ,  km 68, Nairobi-Mombasa Road 

Kenya
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TABLE 1: S o il P roperties RESULTS

WL Wp KS %-.425 mm 56-.002 mm
whole s o il values

118 48 10 94.5 67

BS Max 2..5 kg Wopt % s a l t  by
kN/m 1 % dry mass
11.8 38 0.52

The bu lk sample was a i r  d ried  to  6% m oisture content and
then pu lve rised . P a rt ic le s  la rg e r than 2 nm were
removed. D is t i l le d  water was added to  ob ta in  the
required m oisture con tent, which was checked before each 
te s t .

Compaction was by s ta t ic  loading in  the s tress path 
oedometer under 1 Mpa v e r t ic a l s tress .

EXPERIMENTAL PROGR/UME

The re s u lts  o f f iv e  te s ts  are presented in th is  paper. 
Tests 1 and 3 fo llow ed procedures 1 and 3 re s p e c tiv e ly , 
w h ils t  te s ts  2, 4 and 5 a l l  fo llow ed procedure 2. The 
te s t  procedures d iffe re d  from the standard procedures 
described above on ly in  th a t the  sw e lling  stages were 
performed by ra is in g  the pore water pressure, Uaw, (which 

was i n i t i a l l y  a t a high negative value) in  one increment 
per stage such th a t the pore water pressure was known.

The a x ia l applied s tre ss , ° a y , was co n tro lle d  fo r  a l l  
te s ts  using mercury pots in  which the  elevated pore a i r  
pressure a lso acted in the  top mercury pot so th a t 
changes in the pore a i r  pressure d id  not a ffe c t  the a x ia l 
applied s tre ss .

The a x ia l displacement was c o n tro lle d , fo r  procedure 3, 
to  w ith in  .005 mn on a 36 rrni th ic k  sample by manually 
a d ju s ting  the mercury pot system. This is  equ iva len t to
0.01% s tra in .

A l l  te s ts  were designed to  perm it comparison o f volume 
change a t an a r b i t r a r i l y  chosen v e r t ic a l e f fe c t iv e  stress 
o f 50 kPa a f te r  sw e lling  to  zero suc tio n . In ad d itio n  
the s tress  paths re s u lt in g  from each o f the  procedures 
can be compared.

Test re s u lts  are sunmarised in  Table 2. F ig . 4 shows the 
re s u lts  o f te s ts  1, 2 and 3, p e rm ittin g  comparison o f 
procedures 1, 2 and 3. F ig . 5 shows the re s u lts  o f te s ts
2, 4 and 5 a l l  o f which fo llow ed procedure 2.

These fig u re s  show the void r a t io ,  e, the ra d ia l applied 

s tre ss , oar and the a x ia l applied stress oav a l l  p lo tte d  
against the to ta l suc tio n . The use o f to ta l suction in 
preference to  the pore water pressure o r m atric  suction 
is  explained in Schre iner and Burland (1991).

The values o f U™ given in Table 2 correspond to  the 
m a tric  suc tion . Measurements o f to ta l suction were made 
separa te ly  using the c a lib ra te d  f i l t e r  paper technique on 
a series o f samples o f the  same s o i l compacted in the 
same way as the samples used in the  swell te s ts . Total 
suction  values fo r  the samples in the swell te s ts  have 
been derived from the re la t io n  between to ta l suction  and 
m oisture content and are 3 MPa fo r  Test 5, 4 MPa fo r  
Tests 1, 2 and 3 and 9.8 Mpa fo r  Test 4.

A comparison was made by Schre iner ;and Burland (1991) o f 
the re s u lts  obtained from the th ree  standard procedures 
which are shown in F ig . 4. D iffe rences in  void r a t io  and 
percent swell a t 50 kPa were a ttr ib u te d  t o : -
( i )  the  stress paths d i f fe r in g  from te s t  to  te s t
( i i )  the mean normal stresses a t equal values o f 

suction  d i f fe r in g  from te s t  to  te s t
( i i i )  though i n i t i a l l y  nearly  id e n t ic a l,  the 

m ic ro fa b rics  o f each sample which were a lte red  in 
d if fe re n t  ways during the  te s ts .

Turning to  F ig . 5, th ree  te s t  re s u lts  are shown fo r  three 
samples compacted a t d if fe re n t  m oisture contents 
re s u lt in g  in d i f fe re n t  void ra t io s ,  suctions and 
m ic ro fa b rics .

Although a l l  th ree  fo llowed the same sequence o f 
a p p lica tio n  o f the v e r t ic a l applied s tress  fo llow ed by 
decrease o f the suction  to  zero in stages, the re su lts  
are s ig n if ic a n t ly  d i f fe re n t .  Only Test 5 fo llow s  the 
form o f s tress and volume change th a t would be expected 
from a s im ila r  te s t  on a saturated sample, i . e .  th a t the 
ra d ia l to ta l stress would increase as the pore water 
pressure increases. In both o f the o ther te s ts  th is  type 
o f re la tio n s h ip  does not ho ld , w ith  the ra d ia l stress 
f i r s t  increasing and then decreasing, w ith ou t approaching

F ig . 4 Results o f Tests 1, 2, & 3

TEST 3 

Procedure 3

- m------------------------------•
_ l _________ I_________ I_________ I_________ L

( c ) 0 1 2  3 4

V e rt ic a l applied stress V e rt ic a l applied 
s tress  --------
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100

0

1.6

400

1. 3

1.2

Radial Applied 
S tressN

V e rt ic a l Applied 
Stress —

TEST 2

(a)

F ig . 5 Results o f Tests 2, 4 & 5

the  l im it in g  cond itions discussed above. Once again i t  
is  argued th a t th is  is  due to  the d i f fe re n t  m ic ro fa b rics  
present in each sample which are due to  the d if fe re n t  
m oisture contents during compaction. Changes in  the 
m ic ro fa b rics  during the  te s ts  are o f the  co llapse type 
and occur a t the same tim e as sw e lling  takes place due to  
absorp tion o f water by the  c lay  m inera ls .

DISCUSSION

This type o f behaviour which c o n f lic ts  w ith  e ffe c t iv e  
s tress concepts has been noted fo r  the co llapse 
settlem ent problem, e .g . Burland (1965). I f  we now 
accept th a t the changes in m ic ro fa b ric  are an in te g ra l 
p a rt o f the behaviour o f unsaturated s o ils  then we need 
to  include m ic ro fa b ric  in our s o il model. I t  is  q u ite  
poss ib le , even probable, th a t the 'c h i '  model (Bishop 
1959) fa i le d  because i t  was tes ted  on data from compacted 
samples in  which the m ic ro fa b ric  varied from s o i l to  s o il 
and from one set o f  i n i t i a l  cond itions to  another. 
Consider, fo r  example, F ig . 6 from Jennings and Burland 
(1962). For any one value o f Sr fo r  one s o i l the 
m ic ro fa b ric  is  unique and d i f fe re n t  from th a t formed at 
any o ther value o f S r. Those samples which were 
compacted d r ie s t  and which th e re fo re  have c lus te red  and 
aggregated m ic ro fab rics  w i l l  be more suscep tib le  to  
fa b r ic  a lte ra t io n  o r co llapse than the samples o f the 
same s o il w ith  m ic ro fab rics  estab lished by compaction a t 
h igher m oisture contents.

Consider now the data fo r  te s t  1, p lo tte d  in  F ig . 7. The 
s ta r t in g  p o in t, A, is  shown a t 4 MPa in  terms o f 
to ta l suction  and the end p o in t, B, a t 1.5 kPa, in  terms 
o f e f fe c t iv e  s tre ss . CD is  a satura ted compression lin e  
fo r  a re co ns titu ted  sample. P o in t A l ie s  above the 
v irg in  compression lin e  where i t  is  not norm ally possib le  
fo r  a saturated and unbonded sample to  l i e .  P oint E 
represents the void r a t io  a t which a saturated 
re c o n s titu te d  sample would l ie  under an e f fe c t iv e  stress 
o f 4 MPa. EF represents the sw e lling  th a t would occur 
from E fo r  a saturated s o i l .

I f  we take the void ra t io  a t E to  represent s tab le  voids 
in  the  sense th a t they w i l l  not be a lte ra b le  in  the  way 
th a t would lead to  co llapse , then we can consider AE to

Á
£

©  /

yln j
y
©

X- Sr-Vj / /
/ J //

O 2 0  4 0  6 0  « O

D E G R E E  O F  S A T U R A T I O N  S r

i  C O M P A C T E D  B O U L D E R  C L A Y  (-2U > 4° to )  1 B I S H O P

1 C O M P A C T E D  S H A L E  ( - 2 U . 2 2 % ;  j £ T A L ( l 9 6 0 )

3  b r e a h e a d  S I L T .  B I S H O P  A N D  D O N A L D  ( l 9 6 l )

4 S I L T  ( . - 2 J J  • 3°/o )

5  S I L T Y  C L A Y  t - 2 / J « 2 3 ° / o )

a  T H E O R E T I C A L  D O N A L D  ( 1 . 9  6  O  )

F ig . 6 V a ria tio n  o f "c h i"  w ith  s o il type and te s t 
cond itions  (Jennings & Burland 1962)

represent the  a lte ra b le  vo ids . I f  no a lte ra t io n  were to  
take place during the te s t  then the r a t io  o f s tab le  voids 
to  a lte ra b le  voids would remain constant. We can thus 
ca lcu la te  by simple p ropo rtion  from the s tab le  void r a t io  
a t F what the combined void r a t io  would be a t G, and i t  
f a l l s  c lose to  B. This suggests th a t the re  has been 
l i t t l e  a lte ra t io n  o f the m ic ro fa b ric  during th is  te s t .
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F ig . 7 Saturated and Unsaturated S welling
F ig . 8 Fabric changes during sw e lling

F ig . 8 shows the same data w ith  a fu r th e r  4 te s ts ,  which 
fo llow ed procedure 2 under various values o f oav, added. 
These s ta rted  a t the same m oisture content and suction 
and were compacted under the same s ta t ic  s tress as Test
1. The f in a l  stresses were as shown in F ig . 8 a t H, J, K 
and L. P ro jec tio n  o f the lin e  BHJKL through the end 
po in ts  o f these te s ts  conven ien tly  meets the v irg in  
compression lin e  a t E.

The data needed to  determine how the  s o il w i l l  behave are 
th u s :-

( i )  The compression data fo r  a re co ns titu ted  sample
( i i )  An unload -  reload loop fo r  the re co ns titu ted  

sample
( i i i )  The void r a t io  o f the sample under in v e s tig a tio n
( iv )  The value o f the to ta l suction  present in  the 

sample under in v e s tig a tio n .

P oint E can be determined, g iv in g  the s tab le  void r a t io .  
Line AB can then be constructed to  represent a constant 
ra t io  o f a lte ra b le  to  s tab le  vo ids. Jo in ing  B and E 
gives the lin e  on which the end po in ts  o f swell under 
load te s ts  w i l l  f a l l .  The void r a t io  a t the end o f any 
such te s t  is  found sim ply from the p o in t on BE a t the 
e f fe c t iv e  s tress which w i l l  p re v a il a t the end o f the 
te s t .

CONCLUSIONS

For too many years we have t r ie d  to  make unsaturated s o il 
mechanics f i t  in to  the e f fe c t iv e  stress mould. I t  is  
more c o rre c t to  consider saturated s o ils  to  represent one 
s im p lif ie d  section o f the g re a te r s o i l mechanics which 
includes res idua l s o i l ,  unsaturated s o i l and saturated 
s o i l .  Rather than t r y  to  make unsaturated s o il f i t ,  we 
should seek a model fo r  the g re a te r s o il mechanics, o f 
which the e f fe c t iv e  stress model fo r  saturated s o ils  is 
but a s im p lif ic a t io n .

This study has shown th a t one o f the components missing 
from, o r s im p lif ie d  out o f ,  the o v e ra ll model is  the 
m ic ro fa b ric  o f the  s o i l .  A means o f inc lud ing  the e f fe c t  
o f the m ic ro fa b ric  in the model has been proposed. This

is  not expected to  be the la s t word on unsaturated s o i l,  
but w i l l  ho pe fu lly  lead to  a more con s tru c tive  approach 
to  research in to  unsaturated s o i l .  I t  should not be 
fo rg o tte n  th a t the  re s u lts  presented in th is  paper are 
fo r  compacted s o i ls .
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TABLE 2 : Test Data

TEST 1
STAGE 1 2 3 4

°a v 7 7 7 7

Uaw -910 -910 -665 -470

°a r 50 289 298 284

q -43 -282 -291 -277

Pa 36 193 201 192
e 1.293 1.372 1.388 1.414

TEST 2

°av 50 50 50 50

^aw -900 -900 -700 -500

°a r 131 349 356 334

q -81 299 -306 -284

Pa 104 249 254 239
e 1.285 1.331 1.345 1.365

TEST 3

°av 50 273 327 340

Uaw -900 -900 -700 -500

°a r 128 405 416 390

q -78 -132 -89 -50

Pa 105 361 386 373
e 1.301 1.301 1.301 1.301

TEST 4

°av 50 50 50 50

Uaw 1260 -1260 -1010 -750

°a r 135 191 181 174

q -65 -141 -131 -124

Pa 93 144 137 133
e 1.421 1.553 1.569 1.591

TEST 5

°av 50 50 50 50

Uaw -585 -585 -400 -200

°a r 10 87 154 185

q 40 -37 -104 -135

Pa 23 75 119 140
e 1.239 1.245 1.255 1.276

5 6 7 8
7 7 7 14

-300 -100 0 0
245 153 80 72

-238 -146 -73 -58
165 104 56 53

1.444 1.533 1.649 1.645

50 50 50
-300 -100 0
305 250 168

-255 -200 -118
220 183 129

1.387 1.417 1.438

355 330 240 210
-300 -100 0 0
387 360 253 258
-32 -30 -13 -48
376 350 248 242

1.301 1.301 1.299 1.300

50 50 50 50
-515 -*310 -120 0

163 143 106 75
-113 -93 -66 -25

125 112 94 67
1.610 1.636 1.644 1.676

50 50
-100 0
221 237

-171 -187
164 175

1.295 1.311

9 10 11 12
28 46 73 140
0 0 0 0

81 79 91 168
-53 -33 -18 +28
63 68 85 121

1.637 1.627 1.608 1.543

150 100 50
0 0 0

251 219 187
-101 -119 -137
217 179 141

1.307 1.317 1.327
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