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Cone penetration test for site characterization 

La caractérisation d’un site à l’aide du pénétromètre

R.G.CAMPANELLA, Department of Civil Engineering, University of British Columbia, Vancouver, B.C., Canada
D.S.WICKREMESINGHE, Department of Civil Engineering, University of British Columbia, Vancouver, B.C., Canada

H.J.ECHEZURIA, Intevep, S.A., Caracas, Venezuela

SYNOPSIS: Several statistical methods have been applied to Cone Penetrometer Test (CPT) data in 
order to better characterize a soil stratum. While trend analysis is used to better characterize 
soil property variation and identify sublayers within a soil stratum, the traditional method of 
identifying layers using the friction ratio method is compared to a method based on the scale of 
fluctuation of a sublayer. The random measurement error in data from various test methods has been 
obtained using two different techniques and a comparison has been made for those obtained from these 
methods. A method of two dimensional soil property interpolation considering correlation between 
different points is presented and applied to some data obtained from the CPT. The need for the 
consideration of the variability of a soil profile prior to determining the optimum sampling spacing 
is also highlighted.

1 INTRODUCTION

The natural variability of the soil, the 
limitation of available data, soil disturbance 
while testing or sampling and measurement 
errors, all contribute to the uncertainty of 
soil property evaluation. If every point in 
the ground could be tested, soil properties 
could be known at all intended locations. 
However, in practice this is not feasible and 
the need arises to treat this variation as 
random. In this regard statistics and probabi­
listic methods become a very appropriate tool 
in characterizing such variations.

This presentation deals with the Cone Pene­
trometer Test (CPT), the soundings of which are 
primarily used to identify soil stratigraphy. 
All data analyzed herein have been either 
obtained from the McDonald Farm in situ 
research site of the University of British 
Columbia or from its newer site adjacent to the 
Arthur Laing Bridge, both situated at the 
Vancouver International Airport on Sea Island. 
The data have been acquired at 2.5 cm intervals 
using a cone with a base area of 10 sq.cm, 
penetrating at 2 cm per second. Trend analysis 
to characterize different types of layering, 
the concept of the scale of fluctuation and 
methods of eliminating random error will be 
discussed in the initial sections of the paper 
together with a method of determining the 
optimum number of samples required to identify 
a layer of soil, at a certain confidence level 
and precision. The last part of the paper will 
discuss the interpolation of soil property 
values in two dimensions considering the 
correlation between points. The importance of 
the autocorrelation function and the variogram 
function will be highlighted with an applica­
tion to a two dimensional interpolation 
problem.

2 TREND ANALYSIS

The main purpose of the CPT is to identify 
different types of soil layers in a stratum. 
Soil properties are highly depth dependent, and 
in most profiles a significant depth dependency 
is observed as can be seen from Fig. 1. The 
breaks in the trend will also indicate the 
different kinds of layering and a closer 
examination of the cone bearing log will 
indicate the approximate layer start and layer 
end depths of the sublayers within the entire 
profile. At present the friction ratio is 
often used to identify different layers (Fig.
2). However, the friction ratio did not 
identify the trends shown in Fig. 1. For 
example, the change in layer trend at 10 m 
depth is not identified in Fig. 2. Once the 
sublayer boundaries are decided, linear 
regression is performed on the data to obtain 
the trend line. The correlation coefficient is 
also determined to assess the efficiency of the 
fit. It has been found by the authors that the 
simple statistical parameter, the coefficient 
of variation, is a very good indicator for the 
above purpose of identifying different types of 
layering. The coefficient of variation is the 
ratio between the standard deviation and the 
mean, and its variation with depth is given in 
Fig. 3 which illustrates that the different 
layers identified possess different degrees of 
variation, the average values of which are 
tabulated in Table 1. The trend lines of the 
different layers are illustrated in Fig. 1.

The importance of trend analysis in two and 
three dimensional analysis will be discussed 
later. Most dimensional statistical methods 
deal with stationary data (data with no trend) 
which is referred to as homogeneous data in two 
and three dimensional analysis. Non-stationary 
data with which geotechnical engineers deal 
with regularly, can be transformed to statio­
nary data by removing the trend as follows:

RESIDUAL = DATA - TREND (1)
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CONE BEARMG Qc (bar) FRICTION RATIO (percent) COEFFICENT OF VARIATION

Figure 1. Cone bearing and trend Figure 2. Variation of friction Figure 3. Variation of coefficient 
lines of different sublayers, ratio with depth, McDonald Farm of variation with depth, McDonald
McDonald Farm site site Farm site

Table 1. Variation of scale of fluctuation and 
average coefficient of variation for profile in 
Fig. 1

Parameter Layer
1

Layer
2

Layer
3

Layer
4

Scale of fluctuation, 
6 (cm) 20 60 72 40

Average coefficient 
of variation .21 . 17 . 09 . 19

The deterministic component, the trend, may 
be obtained by some form of a least squares 
regression technique. The appropriate trend 
for any profile provides a fit that gives the 
best correlation coefficient and the least 
variance. The residual is the stationary 
component which is used in correlation 
analysis, for various purposes such as interpo­
lation. The final estimated value in such a 
procedure is the sum of the regressed trend 
term and the correlated residual term.

3 SCALE OF FLUCTUATION

In order to describe a soil profile completely, 
the scale of fluctuation, 6, is required in 
addition to the mean and standard deviation.
The scale of fluctuation gives an indication of 
the degree of variability of a profile. A 
highly variable profile will have a low 6 while 
a slowly varying profile will result in a high 
fi. The scale of fluctuation of any stratum is 
inversely proportional to the coefficient of 
variation, as indicated in Table 1. The scale 
of fluctuation is also referred to as the 
distance of perfect correlation since it is the 
distance within which the soil property shows 
relatively strong correlation from point to

point. When two different test methods are 
being compared, it is recommended that the 
sampling distance be less than 6, so that com­
parison is being done in a region of perfect 
correlation. The opposite is true when 
sampling is performed using the same equipment, 
where for optimum sampling benefit, a spacing 
greater than 6 is advisable.

The scale of fluctuation 6 is determined by 
means of the variance function r (Vanmarke, 
1977), and is defined as follows;

r 2 = (o7/ o ) 2 (2)

where o is the standard deviation of the entire 
layer and oz is the standard deviation of 
spatial averages of sublayers of different 
thickness z. A detailed explanation of the 
method obtaining r is given in Campanella

e5
T*--,

will approach the value of the scale of 
fluctuation (Vanmarke, 1977); i.e., for very 
large lag distance, z, the scale of fluctua­
tion, £>, equals r  -z.

The lag distance expressed as z in Fig. 4 is 
the separation distance between data points. 
Soil properties are correlated between points 
and this correlation is expected to decrease 
with increasing lag distance. This occurs 
because soil properties for closely spaced data 
would exhibit more similarities than for more 
widely spaced data.

The maximum values of the curves (Fig. 4) 
for the different layers of Fig. 1, are the 
respective scales of fluctuation for the 
different layers, and are also tabulated in 
Table 1. It can be observed from Table 1 that 
the soil that is most variable is layer 1, as 
given by the average coefficient of variation 
of 0.21. In keeping with the above argument it 
is the layer with the lowest 6 of 20 cm. 
Similarly, layer 3 has the smallest coefficient 
of variation (0.09) and the highest 6 of 71 cm. 
Therefore, for an efficient testing program
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Table 3. Spacing of samples for a given preci­
sion and confidence level for data in Fig. 1

Layer (m) Tolerance Conf. n Spacing
% level % (cm)

0 40 80 120 160

LAG  D ISTAN CE  (cm)

Figure 4. Scale of fluctuation of the different 
sublayers

o o o layer one 

t t t layer two 

4 4 4 layer three

4 OPTIMUM SAMPLE SPACING

The CPT at UBC performs data logging at a depth 
interval of 2.5 cm. For logging purposes the 
spacing is ideal, because it provides almost a 
continuous profile. However, if a soil para­
meter is to be estimated from a profile the 
spacing may need to be adjusted, depending on 
the soil variability and the required confi­
dence level of the estimate. It is assumed 
that any layer is fully characterized when the 
average value obtained from the data for that 
layer is within 10 percent (A) of the actual 
average which is unknown. The tolerance 
allowed is therefore 10%. In other words, the 
precision is 90%.

The sample size (n) needed to estimate the 
mean to the above precision, with a confidence 
level of (1 - T), can be shown to be given by,

n = (Vt^i) 2/A2 (3)

where V is the coefficient of variation and 
tj_! is the student's t-variate with (n - 1) 
degrees of freedom. It is seen from the above 
expression that the number of samples is 
dependent on the variability of the soil and 
the level of confidence and precision required 
for the estimate. Table 3 has tabulated some 
values for the profile in Fig. 1, to show the 
above relationship. The results in Table 3

using the same test equipment, sampling can be 
performed at spacings as much as 72 cm in layer
3, while in layer 1 it drops down to 20 cm, 
solely due to the fact of its high variability.

All values of 6 so far discussed and 
appearing in Table 1 have been derived for the 
cone bearing value. Table 2 has these values 
compared to the 6 values for sleeve friction. 
Since the sleeve fricton at a particular depth

Table 2. Comparison of the scale of fluctua­
tion obtained for cone bearing and sleeve 
friction for profile in Fig. 1

Scale of 
Fluctuation, 6

Layer
1

Layer
2

Layer
3

Layer
4

6 for bearing (cm) 20 60 72 40

6 for friction (cm) 20 53 64 33

is an average value 
might expect a much

over a 
higher

finite 
6 (due

length one 
to a lower

variability caused by the averaging effect) for 
sleeve friction than for cone bearing.
However, this will be true only if the cone 
bearing measures the bearing at a point.
Results in Table 2 indicate that the 6 values 
for the two soil parameters are approximately 
equal and thus suggesting that the cone bearing 
too is indicative of an averaged value over a 
region which is almost the same as that of 
friction, and does not indicate the bearing at 
a particular point.

4.50 - 5.0 ±10 90 5 12. 5
95 7 8.3

Coefficient of 99 11 5.0
variation
= 0. 11 ±5 90 15 3.5

(low variability) 95 20 2.5
99 34 1.5

10.0 - 10.5 ±10 90 13 4.2
95 10 2.9

Coefficient of 99 30 1.7

variation
= 0.20 ±5 90 43 1.2

(high variability) 95 64 0.8
99 110 0.5

show that for a tolerance of ±10% and a con­
fidence level of 95%, the sample spacing 
required in the soil of high variability is 2.9 
cm while for a soil of low variability it is
8.3 cm. However, if a higher confidence level 
of 99% is required in the more variable soil, 
spacing should be decreased to 1.7 cm. Simi­
larly, if the engineer requires to reduce the 
tolerance by half, in order to increase the 
precision of the estimate, the sample spacing 
will have to be reduced to 0.5 cm, for the same 
confidence level of 99%. However, for the less 
variable soil, the sample spacing required for 
99% confidence level and a precision of ±5% is 
1.5 cm. This clearly illustrates the three 
factors which contribute to the selection of 
sample spacing in a soil stratum; namely, soil 
variability, precision of the estimate and 
confidence level of the estimate.
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5 ERRORS IN TESTING AND DATA SCATTER

The scatter in geotechnical data is obtained 
from three sources; actual variability of soil 
properties, random measurement error and bias. 
The bias is a systematic error introduced by 
systematic influences in testing. Measurement 
errors with non zero mean are considered.as 
biases. While there are suggested ways of 
removing the random error, the bias can be 
determined only in relative terms, that is in 
comparison with a result obtained more accu­
rately using a better test method. For 
example, if the undrained strength of a clay 
has been determined both from the triaxial test 
in the laboratory and in the field from the 
vane test, the bias in the vane test can be 
determined relative to the laboratory values, 
or vice versa. In the absence of such results 
the only error that can be removed from data 
scatter is the random error. Random measure­
ment error or "noise" is assumed to be indepen­
dent from point to point, whereas actual soil 
properties are not. The covariance, C(h), 
which is used for this purpose is defined 
below.

The covariance at lag h, (C(h)), is given 
by,

C(h) = (N - h)“1 (Qi~Qa v ) (Qi+h“Qav ) (4)

where is the measured soil property value at 
a point 'i', Qav is the mean of the data and N 
is the total number of data. If the associated 
error at point 'i' is , the actual value at 
that point (Qc>i is given by:

(Qc )i = Qi + Ei <5>

Considering covariances (C) of the above equa­
tion, it can be shown that,

C(Qc) = C (Q) + C (E) (6)

Since the random error E is independent from 
point to point, C(E) will have a value not 
equal to zero only at zero distance, while the 
soil property variation will have a maximum 
value of C(Q) at zero distance and a slowly 
decaying function, with increasing distance. 
This is because soil properties at points 
closer to each other show a stronger correla­
tion than points further apart. The random 
measurement error would therefore be the 
difference between the variance of the data 
(covariance at zero separation distance) and 
the value of the decaying covariance function, 
at the point where it meets the ordinate. When 
the covariance function is divided by the 
variance of the data the autocorrelation 
function results. This is the normalized 
version of the covariance function and has a 
maximum value of unity and therefore the 
resulting random error using the above 
technique will be expressed as a percentage. 
This method was first introduced by Beacher 
(1978) and has been performed on different test 
methods.

The random measurement error for the CPT was 
very low compared to that of the field vane 
(Table 4). The random measurement errors of 
various in situ test methods have also been 
obtained using Box-Jenkins (1976) methods of 
Time Series analysis (Wu et al, 1986) using the 
statistical package SAS. Although the results

from this analysis were approximate, due to the 

assumptions employed, it compared well with the 
values obtained using the more rigorous method 
previously described. A low random error 
reflects the efficiency of the test method 
since it is directly related to the degree of 
disturbance during testing. This statistical 
technique can also be used to ascertain the 
effectiveness of any improvement performed on a 
test. Table 4 has tabulated values of the

Table 4. Random measurement error obtained for 
different test methods using autocorrelation 
analysis and time series method

Test method
Autocorrelation

analysis
Time Series 
method (SAS)

Cone Penetration 5.0% 5.1%
Flat Dilatometer 5.8% 5 . 5%
Field Vane 36.0% 38.7%
Dynamic Cone 6.1% 8.2%

results for different test methods for the two 
different techniques. The measurement noise of 
36% obtained for the vane is extremely high and 
indicates inconsistencies in the test results 
likely caused by sand and silt lenses at the 
site tested. Figures 5 and 6 illustrate 
typical variations of the autocorrelation 
function with lag distance obtained for the CPT 
and the field vane, respectively.

LAG (meters)

Figure 5. Autocorrelation function of CPT data
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Figure 6. Autocorrelation function of vane data

6 INTERPOLATION OF SOIL PROPERTY VALUES CON­
SIDERING CORRELATION

As already expressed in an earlier section, the 
limitation of data availability at a site 
results in interpolating soil property values 
to obtain values at untested locations. 
Traditionally, geotechnical engineers are very 
conservative and would typically use very low 
bounds of the soil parameters in design and 
analysis. If the independence of soil property 
values between points is assumed, then inter­
polation methods such as least squares 
regression, distance weighting and simple 
weighting functions can be used to obtain 
values at untested points. For example, the 
mean of a data set can be obtained from a 
simple weighting function where the weights are 
all equal to the reciprocal of the number of 
data. An obvious shortcoming of these 
simplified methods, is that redundant infor­
mation is not discriminated against. That is, 
a cluster of n data points located very close 
to each other, will each get the same weight as 
a single data point if they are located at the 
same distance from the point to be estimated. 
Therefore, when n is very large, the estimation 
will almost totally depend on the cluster of 
data points, completely neglecting the effect 
of the isolated single data point. This is 
actually a hypothetical extreme case, but 
clearly exemplifies the shortcoming of such 
methods. In contrast, methods which account 
for correlation overcome this drawback.

Soil property values, situated closer to each 
other are expected to be related more to each 
other, compared to points which are separated, 
wider apart. This relationship between data 
points is expressed by a correlation function, 
either in the form of the autocorrelation 
function p or the variogram function, y , which 
are defined below.

The autocorrelation at a lag h, p(h) is 
defined as:

P(h> = fife f ^ (Qi-Qav> <Qi+h-Qav>/<Qi-Qav>2

where are the data points, Qflv the mean of 
the data and N is the total number of data.

The variogram function at lag h, r(h), is 
defined as:

N-h 0
T(h) = Z (Qi-Qi+h ) /N-h (8)

To develop an autocorrelation function which 
closely resembles the actual process in the 
field, in an analytical form, a sizable data 
set will be required. However, in geotechnical 
engineering, this requirement will rarely be 
satisfied in a typical project, except for 
large projects like a site investigation for an 
offshore oil platform, an earth dam or a very 
high risk project. Therefore, it is very 
important that the test locations be chosen in 
such a way as to optimize the information that 
could be derived from the investigation.

The approach of separating the trend (if a 
trend exists) from the observed data, and 
performing interpolations on the correlated 
residuals has been carried out on CPT data 
sets obtained from the McDonald Farm site.
Seven CPT's were performed at 5 meter spacings 
(Fig. 7). The profiles were divided into

O

CONE BEARING Qc (Bor)

Figure 7. Variation of the cone bearing profile 

across site
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CONE BEARING Qc (Bar)

Figure 8. Interpolated profile at M

layers and where applicable, the trend was 
removed. The trend was fitted by regression 
with an equation of the form,

Q = A + By2 + Cxy (9)

where A, B and C are constants, and x and y are 
the horizontal and vertical distances, respec­
tively.

Several models were attempted to model the 
field autocorrelation function and the one with 
the closest fit was an exponential sinusoidal 
function of the form,

p(x,y) = exp[-(x/q+y/r)]-Cos(x/q+y/r) (10)

where q and r are constants and x and y are the 
horizontal and vertical distances respectively. 
Fig. 7 also shows the variability across the 
site at McDonald's Farm, in the form of the 
seven cone bearing profiles, obtained at loca­
tions A, B, C, D, E, F and G which were spaced 
at 5 meter intervals. Figs. 8 and 9 illustrate 
the interpolated values together with the two 
immediately adjacent cone profiles. Point M is 
located exactly between D and E while point N 
is located 2 meters from E towards F. The 
interpolated values clearly indicate the effect 
of correlation because the values at M are 
clearly not the mean of the data at D and E.
The same also applies to the interpolated 
profile at N. It should be emphasized that the 
autocorrelation or variogram function must be 
determined for the trend removed data, other­
wise the interpolation would result in 
significant error.

CONE BEARING Qc (Bar) 

Figure 9. Interpolated profile at N
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