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Stability of foundations under eccentric and inclined loads 

Stabilité des fondations sous charges excentrées et inclinées

V.G.FEDOROVSKY, All-Union Research Institute of Bases and Underground Structures, Moscow, USSR

SYNOPSIS: A new analytical method for evaluating the bearing capacity of shallow strip foundations 
is presented. The method is a generalization of Prandtl-Novotortsev solution in the case of non­
zero eccentricity. The concept of limit eccentricities is introduced and respeetive generalized 
formulae for the effective footing width are presented. This method gives higher safety factors in 
gravity platform design as compared to conventional techniques.

1.INTRODUCTION

Gravity platforms are very prospective when app­
lied in offshore activities due to the their 
high ice-resistance capacity. Since such plat­
forms experience enormous lateral and moment 
loads (ice, wave and seismic) the analysis of 
their foundations as regards the bearing capa­
city is of primary importance.

Currently, there are many solutions for the 
problem of stability of the rigid-ideally plast­
ic foundation under the centrally loaded strip 
footing subject to arbitrary inclination <$ of 
the applied load, including exact solutions for 
weightless soil (Prandtl, 1920; Novotortsev, 
1938). While for the loads, applied with ecce­
ntricity e^O the what is called "effective" fo­
oting width l/=b-2e is mainly used where b is 
actual width. But this technique proposed by 
Gersevanov (1948) provides too conservative as­
sessments of the soil bearing capacity.

Variational approach to soil slope stability 
analysis gives the rupture line that separates 
the sheared massive from the immobile one in the 
form of a logarithmic spiral (Kopacsy, 1961 ).
The stress distribution along it follows Kotter 
equation. The solution of variatimal problem of 
strip footing soil base bearing capacity feat­
ures the same properties (Fedorovsky, 1985). In 
this solution, however, the load eccentricity 
is also taken into account according to the 
Gersevanov' s proposal, moreover, the rupture 
line in the form of a logarithmic spiral segm­
ent leads to overestimation of the bearing cap­
acity .

The paper suggests a new solution that is al­
so based on Kotter equation but the rupture line 
consists of three segments of straight lines 
and logarithmic spirals same as in Prandtl so­
lution .

2. TltE SOLUTION TECHNIQUE

The problem of the bearing capacity of a strip 
footing 0D(plate ) soil base is considered 
(Fig. 1 ). The soil base is assumed to be rigid- 
plastic that follows Coulomb-Mohr yield condit­
ion with parameters c and y . Soil specific 
gravity is y .

The assumed rupture line ABCD (Fig.1 ) consists 
of three segments: straight line segment AB 
which is the boundary of Rankine maximum stress 
state zone ABO, logarithmic spiral segment BC 
with the centre at the point O and other logar­
ithmic spiral segment CD with downward convexi­
ty (Fig.1a) or upward convexity (Fig.1b) or ano­
ther straight line segment CD (Fig.1c). Smooth 
connection of all the segments is ensured.

The controlling parameters of the solution 
are two angles ^  and 2̂, , that specify the spi­
ral CD centre position. This number corresponds 
to the number of loading parameters (e and <f ). 
If /5>i >  f ii then the centre 0 is allocated 
above the bottom of the plate OD (Fig.la), if 
fci /Si then it is below the plate (Fig. 1b), 
if /Ii = (h then logarithmic spiral degrades 
into straigth line whose inclination is deter­
mined by the value />, (Fig. 1c). The latter case 
corresponds to the known exact Prandtl-Novotort­
sev solution £or the case when 0 and a  = 0 .

It is assumed that upthrust is one-sided in 
the direction of negative semi-axis x(Fig.1 ). 
Surcharge can be easily taken into account 
by introducing increased cohesion c  '=  C + 
and by adding the value to vertical compon­
ent of the specific ultimate load.

The calculation of stresses along the rupture 
line ^  (x jcan  be performed with the help of
Kotter equation

where and 't -  are the normal and the
shear stresses along the line respectively; 
Q - i f C  fan ( d y / d x ?  - the rupture line (slip 
line) inclination angle. The equation (1 ) is 
integrated along segments with the allowance of 
the continuity of and boundary condition at 
point A <6^ = £ cc>>

Components of the ultimate load P and z-coo- 
rdinate of its application point are obtained 
by means of three equations of a rupture zone 
ABCD0 equilibrium.

The stress field in the rupture zone can be 
constructed by introducing the slip line grid 
which complies with the shape of ABCD. In the 
zones BOC and COD it consists of radial straight
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Figure 1. Failure mechanism for strip footing 
under eccentric and inclined load

lines and logarithmic spirals with centres at 
points 0 and 0±(02), respectively. Now Kotter 
equation can be integrated along the segments 
of “active" slip lines, i.fc. lines that are pa­
rallel to external boundaries of respective 
zones, and then G^and ̂  can be transformed into 

and 'C-ty with the help of Mohr circle. 
The stresses thus obtained can be represented 
as a sum of two components that are directly 
proportional to C and ft respectively. The first 
components everywhere comply with equilibrium 
conditions, while the second ones comply with 
them in Rankine zone ABO alone.

The displacement velocity field can be con­
structed together with the stress field. Velo­
city field in the first two variants (Fig.1a,b) 
is controlled by rotary movement of the plate 
and rigid "core" OCD around the velocity centre 
0 l ( 0 z )  and in the third variant (Fig.1c) - 
by translational movement of the plate and the 
core. In the zones BOC and AOB the velocity 
fields are constructed on the basis of continui­

ty conditions in such a way that active slip li­
ne segments would move as rigid bodies (a rota­
tion around the centre in BOC and a translatio­
nal movement in AOB). The obtained velocity 
field is kinematically admissible from the view­
point of the plasticity theory. The velocity 
discontinuity takes place along the rupture line 
ABCD alone. An angle of dilatation specified 
by the volume and shear strain rates ratio is 
equal to the angle of internal friction if eve­
rywhere, that is equivalent to the associated 
rule of plastic flow.

Notably, the assumed pattern of slip lines 
constrains values of the controlling parameters
H, and /*•;. . It is necessary that ¿ip-nr/Z
for the active slip lines starting from the 
plate bottom would end up on the free surface 
having passed through the three zones.

3. RESULTS OP ANALYSIS

Calculated values of vertical component V 
of the ultimate load P .applied to the foot­
ing, are uauallv represented in the form of coe­
fficients Vcf/V^jand of Terzaghi three-term 
formula while in the general case this linear 
formula is not correct and the author proposed 
additional corrective quadratic term (Fedorovs- 
ky, 1985). In the considered case it is diffic­
ult to arrange such representation since the 
tables of_coefficients needs three inputs 
A f ,  o and e = e / b ) .  Therefore we shall confine 
ourselves by representing some small but charac­
teristic portion of the results in a graphic 
form. These results correspond to one angle of 
internal friction (^= 3<?7 and are represented 
in parametric form with the help of angles /?t 
and . _

Fig. 2a shows level lines_of J 1 and e and 
Fig.2b shows level lines of V= V j e l ( -  /Zc ) for the 
case of weightless soil y ~ 0 . In order to find
V for the specified values of o ' and a, , corres­
ponding values of fa and f,, should be determined 
on the graph of Fig.2a and then V  could be fo­
und on the graph of Fig.2b. The symmetry with 
respect to diagonal z ji, may be mentioned as 
the main feature of the solution. At this dia­
gonal the solution corresponds to Prandtl-Novo- 
tortsev solution.

In the case of cohesionless soil C ~  G the pi­
cture is different (Fig.3). Here the symmetry 
with respect to the diagonal approximately re­
mains for o' and ¡7 ̂  ,2 \//r t z( -  k j ) , while for e  it 
completely disappears. _

Very large values of V at Fig.2b and 3b for 
small angles !',1 and/or ^  is the consequence of 
our initial assumption that the failure is one­
sided (left-sided). These results correspond to 
negative values of cr‘ and are valid for the case 
of an asymmetrical surcharge.

4. INFLUENCE OF LOAD ECCENTRICITY

The above results allow to estimate the load 
eccentricity influence on the bearing capacity 
of foundation. Isual assumption that the ultima­
te load onto the eccentrically loaded footing is 
equal to the ultimate load for centrally loaded 
footing with the effective width

J 1 -  b  -  2  e  (2 )
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Figure 2. Level lines of (a ) relative eccentricity e and inclination angle d1 of ultimate load and 
vertical component V  = V/t^ of ultimate load y = 0 )

may be kinematically impossible and underestim­
ates the bearing capacity. The latter has been 
proved by direct experiments where values of 
and e were simultaneously changed in such a way 
that L 1 remained constant (Lavrov, Fedorovsky, 
1988). This conclusion follows from the propos­
ed solution, also.

Consider, for example, dependence V (& ) for 
constant b and cf (Fig.4). The graphs obtained 
with the help of equation (2) from the value of

V for ¿ = 0  are also shown for comparison. In 
the case of jjz.0 and J ' = 0  (Fig. 4a) a divergence 
between both graphs increases with an absolute 
value of e  and reaches approximately 20% at 
I& i - 0 . t 6 7 .  For greater absolute values of the 
relative eccentricity & contact between footing 
and soil is lost at the side of the footing opp­
osite to eccenticity. It is convenient to_int- 
roduce a notion of limit eccentricities S m i u  

and s  such that for there is not

Figure 3. Level lines of (a) relative eccenticity e and inclination avgle <f of ultimate load and 
(b) vertical component of ultimate load ( y r 3 ^ ,  C - O )
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Figure 4. Ultimate vertical load versus eccent­
ricity for different angles of load inclination.
x - limit eccentricities; ----------  new method;
—  —  —  - formula (2)

any contact loss while for ;<i 7 ¿«uii
the loss of contact between the footing and the 
soil appears and the actual width of the footing 
reduces. It is easy to obtain the following ge­
neralization of Cersevanov formula (2)

I \ ( b + 2 e ) / ( i  + 2t2 * , . J  

b~  < . (3)

I (b-Ze)/(/-2e^) 4 e

These formulae have been obtained on the bas­
is of an obvious assumption that when the limit 
eccentricity is exceeded the contact width redu­
ces exaetly so that a new relative eccentricity 
would be equal to the limit one, Such calculated 
effective width is to be used in the caleu- 
lations of the bearing capacity instead of the 
real width b. Values of V thus obtained are 
smoothly dependent on the actual load eccentri­
city £ . It is visible at Fig.4 and corresponds 
to experimental results and common sense.

Limit eccentricities are functions of if and
&  and also of C / j f b  -  ratio (Fig.5). There­
fore we must take into account the fact that the 
ratio of c  and % b ' would vary after limit eccen­
tricity is exceeded. When applying Terzaghi 
formula to avoid iterations Uc and /Vj should 
be determined separately using the limit eccent­
ricities for cases ^ - 0  and c * 0 , respectively.

Considering Fig.4 again we note that when

the maximum bearing capacity is achieved for 
a small positive eccentricity. In the case of 
cT=i5“ it corresponds to the experimental data 
(Lavrov, Fedorovsky, 1988) while for a - 0  this 
is explained by the assumption of one-sided up­
thrust .
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Figure 5 .  Maximum and minimum relative eccent-
ricites versus load inclination angle

5. APPLICATION TO CfftAVITY PLATFORM DESIGN

On the basis of the above data we may recommend 
the following way for assessing the gravity 
platform foundation stability. In this case the 
vertical load V is practically constant and 
has eccentricity close to 0 and the horisontal 
load component H is applied at the permanent 
height h. The stability factor should be assu­
med to be equal to Uf/H , where is the level of 
H that produces the failure of foundation the 
given V. To obtain Hf the curve of ultimate 
loads is plotted versus coordinates (V, K). For 
this purpose the set of total load inclination 
angles cr is taken within the range from 0 up 
to arotan ' b / 2  b ) , V  -f and hl.f. — V+ bnn J 1 
are obtained for any given J 1 and e = A fan/with 
account of the above considerations. Then we 
plot the necessary curve by joining the obtained 
points.

The calculations show that a gravity platform 
weight is usually many times less than Vj. for
o  =  C „ Therefore, the rising segment of the very 
segment the account of eccentricity with accor­
dance to the proposed method gives high increa­
se of the safety factor as compared to the cal­
culation with the help formula (2).

6. CONCLUSIONS

It must be noted that the proposed solution is 
the direct generalization of Prandtl-Novotort- 
sev solution in the case of non-zero load eccen­
tricity. This solution is exact for the weight­
less foundation (i.e. it is statically and ki­
nematically admissible simultaneously). For the 
case of weighty soil and non-zero angle of in­
ternal friction •(> the solution gives the 
upper estimate of the bearing capacity. The con­
cept of limit eccentricities has been introduced 
and the known Cersevanov formula for the effec­
tive footing width has been generalized respecti­
vely. The considerable increase of the design 
safety factor is achieved by means of the res­
pective analysis.
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