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Instability of sand under applied shear stresses
Instabilité d’'un sable sous contraintes de cisaillement

D.PRADEL, Lecturer, Department of Civil Engineering, University of California, Los Angeles, USA
P.V.LADE, Professor, Department of Civil Engineering, University of California, Los Angeles, USA

SYNOPSIS

For elastoplastic solids Drucker’s quasi-thermodynamical postulate is often

regarded as the necessary condition for material stability. The non-applicability of this postulate
to grapular materials is demonstrated in the light of an experimental investigation conducted using
a torsional shear device. The tests revealed that for all the combinations of applied shear
stresses, instabilities can develop well below the failure surface in a region where, due to
non-associated flow, the second derivative of work is negative.

INTRODUCTION

Concerns about instability have created the
needs for establishing theoretically the
necessary and sufficient conditions under which
a material is stable. Within the theory of
plasticity several postulates that would
guarantee the mechanical stability of a soil
element have been proposed based on energy
principles (Bishop and Hill, 1951; Drucker,
1951) . However, recent experimental studies
(Lade et al., 1987 and 1988) revealed that the
behavior of sand violates these postulates along
certain triaxial stress paths.

STABILITY POSTULATES

Based on the hypothesis of a rigid plastic
material Bishop and Hill (1951) showed that for
an aggregate of infinitesimal volume the
following condition guarantees stability:

(o,~0})-deg;20 1)

Where O designates the actual state of stress,
c° is a stress state located anywhere inside the
elastic domain, i.e. not violating the yield
condition, and de is the increment in strain.
The above inequality is known as the Maximum
Work Principle and its application to a small
stress increment d0 requires the second
derivative of work to be positive:

d’W =do;-dg; 20 )

Since in their derivation Bishop and Hill
considered the material to be inelastic, the
strains in inequalities (1) and (2) are entirely
plastic:

(oy~o)-def 20 3)

d’WP =doy - def 20 @)

Using a completely different approach based on
thermodynamical considerations Drucker (1951)
proposed inequalities (3) and (4) as the
necessary condition for material stability.
Drucker’s quasi-thermodynamical postulate is
based on the hypothesis that energy is
dissipated during a cycle of application and
removal of a small load increment. Hence, energy
must be supplied to the material in order for
the plastic deformations to take place.

The stability condition contained in (3) and (4)
was analyzed and discussed by Mandel (1964). He
showed that Drucker’s postulate is a sufficient
but not a necessary condition for a material to
be stable. Besides, one of the hypotheses behind
the Maximum Work Principle is that sliding
between grains obeys Schmid’s law, which
requires a constant sliding resistance
independent of the intergranular forces such as
found in metals (Schmid, 1924). The frictional
nature of sliding between soil particles does
not obey this law. Therefore discrepancies
between inequalities (3) and (4) and the actual
behavior of granular materials should be
expected.

Based on the assumption that a stable material
is able to propagate a small perturbation in the
form of waves, Mandel (1964) proposed a
necessary condition for stability. He showed
that a wave can propagate in a material with an
elastoplastic matrix A, along the direction a,
if and only if all the eigenvalues A of the
matrix B are positive, where:

de; = Ay, doy, &)
By=Au oo ©
k=123 A >0 @)

743



8/18

If one of the eigenvalues A is negative or null
one of the components of the perturbation can
not propagate. This implies instability, and the
possible appearance of strain localization along
a certain direction. This phenomena is known as
bifurcation and condition (7) may be used to
predict the appearance of shear bands.

ASSOCIATED AND NONASSOCIATED FLOW

If the yield surface, f=0, is smooth, Drucker’s
postulate requires the constitutive law to be
associated. In geometrical terms it implies
normality between the plastic strain increment
and the yield surface (Drucker, 1951).
Associated laws are mathematically attractive
because theorems regarding the existence and
uniqueness of a solution and minimum principles
can be derived (Koiter, 1960). The use of
associated flow laws is widespread in
constitutive modeling and several authors have
used them to explain and predict the behavior of
soils and soil structures.

Because nonassociated laws reject the normality
condition, the existence and uniqueness of a
solution can not be guaranteed (Mroz, 1963), and
these laws are therefore mathematically less
attractive. Nevertheless, there is strong
experimental evidence that granular materials do
not obey Drucker’s postulate:

(i) In series of drained conventional
triaxial experiments with decreasing
stresses and increasing stress ratio,
stable behavior was observed although
inequality (2) was violated, d®W<0 (Lade
et al., 1987).

(ii) Undrained strain controlled triaxial
tests on loose sands often exhibit a drop
of the deviator stress in a region well
below failure. This behavior also implies
a negative second derivative of work,
(Moroto, 1985).

Series of tests performed by Lade et al.
(1988) showed that switching from drained
to undrained conditions can be essential
to the stability of granular materials.
Furthermore, on its way to failure
inequality (2) is violated and the
material is unstable.

Within the framework of plasticity the above
observations can only be explained with
nonassociated models. It also requires the
stress paths to be directed within the wedge
where plastic loading occurs with d*WP<0
(fig.1) .

(iii)

EXPERIMENTAL CONDITIONS AND PROCEDURES

Hollow cylindrical specimens of locose Antelope
Valley sand (e=1.221, D,=34%) were used in this
study. The specimens had nominal dimensions of
an inner radius of 90 mm, an outer radius of 110
mm and a height of 390 mm. The use of a
torsional shear device allowed for individual
control of vertical, torsional and radial
stresses (fig.2). Under these conditions the
increment of strain energy dW can be calculated
using equation (8).
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Fig.3 Direction of the stress paths.




dW=0,"-de, +0, - de,+ 0y - deg+ 20,4 - de ®

Since equilibrium requires the tangential and
radial stresses to be equal, equaticn (8) can be
rewritten as:

dW =p’-de, + A0 dAE+6,,- dy, ©)

in which: 1
p'=3 0+, +0)) (10)
B=6+E+E (1
Ac=0,-0, (12)

sile. Bta] . L

&-3(5.- 2 J- 38 (13)
and: Te=2" 6 (14)

In equation (9) the first right-hand term gives
the volumetric contribution to energy, while the
second and third terms define the contributions
from shear distortion. This equation reflects
that two very distinct shearing modes are
possible in torsional shear. One is the triaxial
mode created by the stress difference AC and
the other is the torsional mode in which shear
stresses are applied to the surface of the
specimen.

After isotropic consolidation, the specimens
were triaxially loaded to the target values of
the stress difference A6 and the effective mean
normal stress p’=196 kPa. Then the torsional
stress was applied under drained conditions
while keeping A6 constant (fig.3). The shear
stresses were applied very slowly, and each
phase of the experiments lasted 4 hours or more.
Hence, all the kinetic energy terms can be
neglected and dW in equations (8) and (9)
represents the increment in total energy.

If undrained conditions prevail the volumetric
contribution to energy in (9) is null. Then the
increment in energy dW and the second
derivative of work become respectively:

dW =Ac - dAE+ G- dY,e (15)

&’W =dAc - dAe+do,4- dY, (16)

INSTABILITY OF SAND IN TORSIONAL SHEAR

After reaching the desired torsional shear
stress under drained stress controlled
conditions, the drainage valve was closed. This
caused a rapid increase in pore pressures
(fig.4) while strains steadily accumulated
(figs.5 and 6). During this phase of the
experiments the torque and vertical force acting
on top of the specimen could not be maintained.
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Fig.7 Torsional mode stress-strain behavior.

Consequently a
(figs.7 and 8)
portion of the
curves (figs.7

decrease in shear stresses

was observed during the undrained
stress paths. The stress-strain
and 8) clearly demonstrates that

from the moment the drainage valve was closed
the specimens were unable to sustain the given
load and were therefore by definition unstable.

The drop in shear stresses combined with
increasing shear strains implies that each of
the two right hand terms in equation (16) are
negative, and therefore:

d’W =dAc - dAe+do,,- dy, <0 amn

The elastic part of d’W is always positive
(Koiter, 1960), hence the above inequality
requires &*WP to be negative.

This behavior is also observed in the softening
range of a conventional drained triaxial
compression test (fig.9) were the material is
unstable. Hence, different experiments indicate
the close relation between d’W<0 and unstable
behavior. However, a direct comparison between
the type of instability observed in conventional
triaxial tests and the one from the torsional
shear tests presented here is impossible. In a
triaxial test, d°W becomes negative after the

maximum stress ratio has been reached (at the
failure surface), and the specimen is
unconditionally unstable. In contrast, the

hollow cylindrical specimens were unstable
inside the failure surface well before the
maximum stress ratios had been reached (fig.10).

Note that during the drained portion of the
stress paths the specimens were stable and
exhibited a positive d®W. Hence inequality (17)
is not the cause but rather a requirement of the
unstable material behavior. This is in agreement
with the theoretical findings obtained by Mandel
(1964) and with the experimental observations by
Lade et al. (1987).

The specimens were examined visually during the
entire process of pore pressure build up and
after the experiments were completed.
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No evidence of shear banding was detected in any
of the specimens, which suggests that Mandel’s
stability condition (7) was satisfied along all
the stress paths. Hence, neither the Maximum
Work principle, nor Drucker’s postulate, nor
Mandel’s wave propagation condition, seem to be
able to explain the type of instability observed
here.

A more plausible explanation to this type of
unstable behavior can be derived from
nonassociated flow. When the yield surface opens
up in the outward direction of the hydrostatic
axis, yielding can occur for a decreasing mean
effective stress p’. In a material that tends to
compress during plastic flow, undrained
conditions lead to an increase in pore water
pressures. Hence, loading is free to occur under
constant or even dropping shear stresses,
provided the yield surface f and the plastic
potential g satisfy the following conditions:

of

—<0 18

5 (18)
deE=7»-g—§>0 (19)

Hence, an element of soil under undrained
conditions and satisfying the above conditions
is potentially unstable, and a small
perturbation is sufficient to trigger the
instabilities observed in the present study, for
any combination of shear stresses.

YIELDING AND FLOW IN TORSIONAL SHEAR

In order to investigate the validity of this
explanation, embodied in equations (18) and
(19), the yield and plastic flow characteristics
of the sand were studied prior to closing of the
drainage valve. The material behavior along
certain stress paths allows differentiation
between the regions where the behavior of the
material is elastic and the regions where
yielding occurs. Consequently sections of the
yield surface, f=0, can be obtained
experimentally using the proper loading scheme.
Stress paths involving a small cycle of loading
and unloading, followed by relocading in a
different direction, can be used for that
purpose. Using this technique several
investigations have been conducted using
conventional triaxial (Poorooshasb et al., 1967;
Tatsuoka and Ishihara, 1974), cubical (Yamada
and Ishihara, 1982) and hollow cylindrical
specimens (Pradel, 1988).

In the present study, the stress paths used for
determination of yield surfaces involved changes
in the mean effective stress p’ and torsional
stress O,, while keeping the stress difference
AG constant (figs.3 and 11). The yield point,
i.e. the state of stress at which plastic
strains reappear, was obtained from the
stress-strain curve as exemplified in fig.12. In
fig. 13 the experimental yield points are
plotted together. Obviously, the directions of
the yield surfaces drawn through these points
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Fig.14 Plastic flow in test S5Y2.

satisfy inequality (18), for all the
combinations of applied shear stresses employed
in the present study.

In those portions of the tests in which
torsional shear stresses were applied while the
mean normal stress was kept constant, the
measured volumetric strains were entirely
plastic. The compressive behavior of all the
specimens is reflected by the direction of the
plastic strain increments shown in fig. 13, and
implies that inequality (19) is also fulfilled.

The unloading branches of the stress-strain
curves (fig.12) show that the elastic strains
are very small compared to the plastic strains.
The strain increments in fig.13 are then good
approximations to the directions of plastic
flow. These directions give evidence of the
existence of nonassociated flow, 0#0, and of a
wedge in which &WP<0 (fig.1l).

Further evidence of this wedge was obtained from
a drained test in which the specimen was
subjected to application and removal of small
stress probes do. Fig.14 shows that the
directions of the irrecoverable strains measured
at the end of each cycle indicate values of the
angle P greater than 90°. Since A6=6,-G; was
constant throughout the experiment, then d*Wr<0.
Note that because the test was performed under
drained conditions, pore pressures could not
rise and instability was not free to develop.
This test shows stability although Drucker’s
postulate is violated and implies that
inequalities (1) through (4) are not necessary
conditions for stability.

CONCLUSIONS

Torsional shear tests conducted with various
combinations of applied shear stresses show
overwhelming evidence that granular materials
exhibit nonassociated flow. They also reveal
that unstable behavior, with all the
consequences it may have, can occur well below
the failure surface. This is in contradiction
with the stability postulates by Drucker and
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Hill which demand associated plastic flow, and
require that instability without shear banding
occurs only when the failure surface is reached.

A possible explanation to the instability of a
soil element suddenly under undrained conditions
is provided from nonassociated flow. It requires
the yield surface to open up in the outward
direction of the hydrostatic axis and the
material to be compressive. Both requirements
were found to be in agreement with the observed
yield and flow characteristics of the sand,
which exhibited unstable behavior.
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