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Mechanisms of fabric evolution in granular media
Evolution de la structure des milieux pulvérulents
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SYNOPSIS: Micromechanical mechanisms of fabric evolution in granular materials are examined with the objective to provide quantitative
description of the elements of fabric relevant to macroscopic stress-strain response of granular materials. Physical ideas presented in the
paper generalize numerous observations on numerically simulated plane granular assemblies. Theoretical results related to development
of induced anisotropy, mechanisms of dilatancy and energy dissipation lead to stress-strain relationships for plane granular assemblies.
Conventional macroscopic parameters such as angle of friction at constant volume and peak dilatancy rate are explicitly expressed in
terms of microstructural characteristics. Basic theoretical relationships are verified on the basis of numerical experiments with plane

granular assemblies.

1 INTRODUCTION

The difficulties in understanding the physics of granular materials
are related to the fact that the fabric of sands (i.e. the arrange-
ment of particles) continuously changes under applied loads. Such
changes are traceable in experiments on photo-elastic disks, nu-
merical simulations of plane granular assemblies and physical tests
on sand in which the system of interparticle contacts is carefully
monitored (e.g. Cundall and Strack 1979, Oda 1972). The ob-
jective of this paper is to introduce quantitative aspects of fabric
description that are necessary for derivation of constitutive rela-
tionships for sands from physical considerations. Although the
microscopic mechanisms discussed in the paper are believed to be
of a general nature, the mathematical aspects of fabric descrip-
tion are simplified and directed to explain the behaviour of plane
assemblies in experiments without stress rotations.

2 DESCRIPTION OF FABRIC

Perhaps the easiest way of gaining a physical insight into the na-
ture of fabric changes is to monitor the total number of interpar-
ticle contacts in a simulated "biaxial” test on an assembly of disks
(Bathurst 1985). The behaviour of the assembly of particles in this
numerical experiment features attributes of sand response such as
softening and dilatancy (Figure 1). The dilatant behaviour of the
assembly leads to disintegration of fabric manifested by the loss of
contacts (Figure 2a). The loss of contacts is orientationally non-
uniform in tﬁe sense that contacts oriented along the direction of
tensile strain disintegrate most rapidly while some contacts are
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Figure 1 Biaxial test setup and stress-strain-dilatancy curves.
Thickness of lines crossing the assembly is proportional to magni-
tudes of contact forces.
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Figure 2 (a) Variation in the total number of contacts during sim-
ulated test. (b) Changes in the number of vertical and horizontal
contacts. (c) Contact orientation distribution at large strain and
analytical approximation. (d) Comparison of initial and limiting
contact orientation distributions. The shaded area between the
distributions represents disintegrated contacts.

created in the direction of compressive strain (Figure 2b). As a
result, the polar distribution of contact orientations takes a char-
acteristic "peanut” shape (Figure 2c). The normalized contact
lorientat’.ion distribution S(¢) can be adequately expressed as fol-
ows:

5(8) = %[1+ac052(0—00)] )

where 6 defines angular orientation with respect to horizontal di-
rection; a is the parameter defining the anisotropy in contact ori-
entations and represents the eccentricity of the "peanut” in Fig-
ure 2c; 6, is the direction of anisotropy (vertical for the test in
Figure 1).

3 DESCRIPTION OF CONTACT FORCES

Along with the changes in the total number of contacts, inter-
granular forces evolve due to changes in external loads and inter-
nal geometry. Although the variation of forces from one contact
to another is highly irregular, it is quite clear that intergranular
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forces are generally higher on contacts oriented toward the major
principal stress direction (Figure 1). Regular trends in the orienta-
tional distribution of contact forces can be observed by averaging
forces over groups of contacts with similar orientations. Figure 3a
illustrates the orientational histogram of normal components of
contact forces averaged over contacts with normal vectors falling
within 10 degree orientational intervals. The distribution of tan-
gential components of contact forces is shown in Figure 3b.

Analytical expressions for average normal and tangential forces
that adequately describe histograms in Figure 3a,b are as follows:

TH(G) = TD [1 + a, cos2(f — 9,)]
f1(8) = —Fo[acsin2(8 - 6y)] (2)

where f, is the average force over all contacts; an, @, are non-
dimensional coefficients defining the orientational variation of av-
erage contact forces and 8 is the preferred direction of forces. In
the described biaxial test, 8¢ is coincident with the major princi-
pal stress direction. It should be noted that in tests that involve
principal stress rotation the direction of maximum force does not
necessarily coincide with the major principal stress direction.
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Figure 3 (a) Orientational distributions of average normal forces at
mitial state and at peak strength. (b) Orientational distribution
of average tangential forces at peak strength.

4 EVOLUTION OF FABRIC AND CONTACT FORCES

Preferential loss of contacts oriented in the direction of tensile
strain leads to an increase in the degree of anisotropy that can be
expressed in terms of the relationship between the parameter of
anisotropy a and shear strain (Figure 4a). The monotonic growth
of a reflects a progressive destruction of the system of contacts.

The variation of the coefficients of force anisotropy a,, a; with
shear strain (Figure 4b) reveal trends that can be interpreted in
physical terms. For example, the initial increase in tangential
forces (increase in a;) continues only up to a point when deforma-
tions cease to be purely elastic. From there on a,; drops off due to
particle rotations that tend to release tangential forces.

Normal forces, on the other hand, tend to grow steadily in the
direction of the major principal stress and well into the range
of plastic deformations. This corresponds to an increase in a,
(Figure 4b). Normal forces grow along stiff load paths (visible in
Figure 1a) where the density of the assembly is greater than aver-
age. When the density of the assembly drops sufficiently, due to
dilatancy, average normal forces on contacts oriented in the ma-
jor principal direction diminish. This corresponds to macroscopic
softening and reduction in ay.

5 STRESS-FABRIC-CONTACT FORCES RELATIONSHIP

The evolution of microstructural characteristics with shear strain
(Figure 4a,b) bears a qualitative resemblance to familiar stress
strain curves for granular materials. This correspondence is not
coincidental as it can be shown (Rothenburg and Selvadurai 1981)
that the introduced microscopic parameters are related to the
measure of deviatoric load as follows:

gy — 02

1/
={a+an+ 3
oy + 02 Z\G a @) (3)
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Figure 5a illustrates verification of the above theoretical re-
lationship based on independent calculation of microstructural
parameters a, a,, a; and comparison of their half sum with
(o1 —02)/(01 + 02) determined from boundary stresses. It is visu-
ally apparent that relationship (3) accurately relates the macro-
scopic measure of shear stress to characteristics of microstructure.
It must be noted that the above relationship is only valid when
the major principal direction of stress is coincident with the di-
rection of anisotropy. This is the case for loading paths that do
not involve principal stress rotations.

Relationship (3) is a simplified form of the following general ex-
pression for stress tensor for assemblies of spherical particles and
their 2D analog (Rothenburg and Selvadurai 1981):

oi; = dm, / Fi(n)n;(m)S(n)d n (4)

where d is the average diameter of particles (spheres or disks); m,
is the number of contacts per unit volume (area for plane systems);

F.(n) is the average force acting on contacts with normal vector
n and S(n) is the contact orientation distribution introduced pre-
viously for plane systems. Integration above is with respect to a
full range of contact orientations. For plane systems, integration is
performed in polar coordinates using n = {cosf,sin8}, dn =d#6.

Relationship (3) follows immediately if expressions (1), (2) are
substituted into (4) and only linear terms with respect to param-
eters of anisotropy are retained during integration. The neglected
terms introduce little error, as comparison in Figure 5a suggests.
If all terms are retained, the two curves in Figure 5a become in-
distinguishable.

From a physical point of view relationship (3) implies that the
ability of a granular assembly to carry deviatoric loads is related
to its ability to develop an anisotropic distribution of contact ori-
entations (¢ # 0) or to sustain highly direction-dependent con-
tact forces (@,,a, # 0). Since parameters a, a, ,a, each make
an additive contribution to the measure of strength according to
singm = (01 — 02)/(o1 + 02), these parameters are essentially
components of strength.
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Figure 4 (a) Evolution of anisotropy in contact orientations.
(b) Evolution of parameters of contact force anisotropy.
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Figure 5 (a) Verification of stress-force-fabric relationship. (b) Ra-
tio of parameters of anisotropy vs specific volume.



6 MECHANISMS OF ANISOTROPY DEVELOPMENT

The degree of anisotropy in a granular assembly is a function of
the geometrical particle arrangement which varies with strain. If
a granular assembly is initially under hydrostatic load, friction in
contacts is not mobilized and the assembly can deform only elas-
tically. When deviatoric load is applied, it preferentially increases
forces on contacts oriented in the major principal direction. At
the same time, forces on contacts oriented in the direction of mi-
nor principal stress are reduced. On some of these contacts the
force is reduced to zero (i.e. some contacts disintegrate). In lo-
cations where the number of contacts is reduced some particles
become mobile and deformation occurs when the overall number
of mobile particles becomes sufficiently large. The macroscopic
motion of the assembly can be stopped when some of the mobile
particles form contacts that prevent their further motion.

Formation of contacts in the direction of compressive strain and
contact disintegration in the direction of tensile strain results in
development of oriented conglomerates of interlocked particles
that move as rigid blocks. The location of these regions in the
assembly coincides with stiff load paths in Figure 1. As devi-
atoric load increases and contacts disintegrate, the entire mate-
rial becomes partitioned into subregions that remain interlocked
and move as rigid entities. The kinematics of these regions was
described by Drescher and De Josselin De Jong 1972 based on
experiments with photo-elastic disks.

Although the parameter of anisotropy a reflects the difference in
the number of vertical and horizontal contacts, it indirectly re-
flects the number and the size of blocks that move as rigid units.
In the process of unidirectional deformations the assembly finally
achieves a sufficient freedom for deformations to proceed unre-
strained. In essence, at a limiting state the material has lost
all redundancy eliminating contacts that restrain deformations.
As there is a limit on the number of contacts that can be lost,
there must be a limiting value of the parameter a. The limiting
anisotropy a = ao is clearly identifiable in Figure 4a and devel-
opment of anisotropy with shear strain recorded in the simulated
test can be approximated as follows:

a(7) = Geo o (5)

where 7 = €; — €2 is shear strain and a is some constant. Specific
reasons for choosing the above hyperbolic relationship can be ex-
plained by noting that it can be rewritten in an incremental form
that conveys physical meaning:

da = i(aw —a)(1- i)d'y (6)

The proportionality of the increment of a to the increment of shear
strain dy = de; — de; implies that da is proportional to the differ-
ence between the number of contacts created due to compressive
strain de; and the number of contacts disintegrated due to the
tensile increment de,.

The origin of the coefficient of proportionality above is somewhat
more complex. Its composition implies that the increment of a
is proportional to the number of contacts (ax — @) that can still
be disintegrated at a given state of fabric and to the probabil-
ity P(a) = (1 — a/ax) that the system can remain stable after
disintegration of a contact. The choice of this probability is some-
what arbitrary but P(0) = 1 reflects the notion that the assembly
is most stable in an isotropic state and unstable in the state of
limiting anisotropy when P(ax) = 0.

It should be noted that the incremental equation (6) for anisotropy
development may not be valid under conditions of principal stress
rotation when internal stability appears to be more complex. Inte-
gration of (6) for monotonic paths with increasing v and initially
isotropic state at v = 0 leads to (5).

7 MECHANISM OF ENERGY DISSIPATION

With the degree of anisotropy a being defined in terms of shear
strain according to (5), further theoretical developments leading
to stress-strain relationships must concentrate on terms an, a; in

8/20

the strength equation (3).

It is quite clear that the magnitude of the directional variation
of contact forces reflected in a, is limited by conditions of stable
sliding at a given state of fabric. Although separate determina-
tion of a, and a, is difficult without complex statistical theory of
friction mobilization, the sum @, + a; required in expression (3)
can be determined indirectly through equation of energy dissipa-
tion F = o1€; +03€;. The latter can be conveniently rewritten as
follows: .
4, _F 1)
P Y pm
where ¢, = € + &3, ¢ = (01 — 0,)/2 and p = (61 + 02)/2, while
the ratio g/p is given by (3).

The assessment of the rate of energy dissipation requires knowl-
edge of the number of sliding contacts at a given state of fabric.
Observations on simulated systems suggest that the number of
contacts where slip occurs is rather small and slip invariably oc-
curs at contacts that are end points of elongated blocks of particles
that slide as rigid elements. Since the number of such blocks is
indirectly reflected in the parameter of anisotropy a, it is reason-
able to postulate the following expression for the rate of energy

dissipation: ]
E = papy (®)
where p is some constant.

Further utilization of the energy dissipation equation (7) requires
specification of the dilation rate €,/. In this respect it should be
noted that dilation of granular materials is associated with macro-
scopic movement of elongated conglomerates of particles that act
like wedges disrupting the material. From this point of view it is
clear that the macroscopic rate of volume change should be pro-
portional to the size of interlocked conglomerates and their total
number. Both are proportional to a. More detailed statistico-
geometrical analysis leading to this conclusion is described else-
where (Rothenburg and Selvadurai 1985).

It can, therefore, be expected that €,/y ~ a with the coefficient
of proportionality being a function of a parameter reflecting the
density of packing, i.e.:

é&/y = —aD(v) (9)

where D(v) is a function of specific volume v. Since dilation rate
of granular assemblies must be zero at "critical” specific volume
ve, D(v) must be such that D(v.) = 0. If D(v) is decomposed into
Taylor series and only linear terms retained, this function can be

taken as follows:
D(v) = 6(1 — v/v.) (10)

where § is some constant controlling the rate of dilation (or con-
struction when v > v.).

Substitution of (8) and (9) into (7) gives the following expression
for the mobilized angle of friction for a given state of fabric:

sing,, = a(p + D) (11)

where D is given by (10). The sum of the coefficients of force
anisotropy can be found from (3) as follows:

ap +ay=a(2D+2p-1) (12)

It should be noted that the combination of the postulate on energy
dissipation and specification of the dilation rate are sufficient to
obtain the expression for the mobilized angle of friction without
recourse to the strength equation (3). In that sense relationship
(12) may appear as somewhat redundant as far as stress-strain
relationships for plane systems are concerned. The value of the
relationship (12) in the present context is that it suggests that
the ratio (e¢n, + a,)/a depends on specific volume (linearly with
the choice of D(v) according to (10)). Figure 5b presents a plot
of the ratio (a, + a,)/a vs specific volume of the assembly during
the simulated biaxial test. Although the scatter of data points
is significant, the correlation of the (a. + a¢)/a ratio with spe-
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cific volume is unquestionable. The relationship in Figure 5b is
only linear in the vicinity of the critical specific volume. This is
expected as D(v) in the form (10) is only the linear term in the
Taylor expansion of D(v) in the vicinity of the critical specific
volume.

8 STRESS-STRAIN RELATIONSHIPS

Stress-strain relationship for plane assemblies can be derived ana-
lytically for the linear choice of the dilation function D(v) accord-
ing to (10). This involves integration of the dilatancy equation
(9) with a(v) according to iS) The final form of the volumetric
curve can represented as follows:

€y

=1-T(7) where: I(¥)=(1+7/v) exp™ (13)

where €55, is the maximum volumetric strain from initial to crit-
ical state (positive if the material dilates); 7 is shear strain nor-
malized in such a way that ¥ = 1 at a point where the rate of
dilation is maximum (i.e. ¥ = v/44;) where the point of peak
dilation rate is related to microstructural parameters according

to yan = 1/Vabax; v is 8 non-dimensional parameter controlling
the magnitude of peak dilation rate and is related to microstruc-
tural parameters (v = y/awé/a). It should be noted that the
above relationship excludes small terms of the order of the square
of maximum volumetric strain.

With the volumetric strain curve known, specific volume during
the test can be computed and D(v) evaluated according to (10).
The relationship for the mobilized angle of friction can be deter-
mined immediately from (11) to obtain:

sin ¢, _ [

o s (14
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Figure 6 Stress-strain relationship for constant mean pressure test.
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where sin ¢, is the mobilized angle of friction at constant volume
and is related to microstructural parameters by sin ¢.y = faoo-

The above two equations define stress-strain curves in terms of
conventional parameters such as sin¢.,, 7dil, €max and another
parameter v related to the peak dilation rate. The shape of stress-
strain dilation curves is shown in Figure 6. It should be noted
that the volumetric curve determined above excludes the elastic
component of compression and lacks a characteristic initial ”dip”
typical of tests with increasing hydrostatic confinement.

Although the developed relationships are for plane systems, the
resulting analytical expressions are very versatile in approximat-
ing results of conventional triaxial tests when elastic compression
is included. The key reason for this feature is that analytical
curves are given in terms of easily measurable parameters. Also,
the hyperbolic nature of the fabric mobilization equation leads to
an essentially hyperbolic shape for stress-strain relationships at
stresses below peak strength.

9 CONCLUDING REMARKS

The results of the present study unequivocally established that
the major characteristic of microstructure that controls macro-
scopic response of granular materials is the contact orientation
distribution. A parameter of this distribution defining the degree
of microstructural anisotropy was uniquely related to the measure
of deviatoric load and density of the plane granular assembly. This
result essentially gives a quantitative meaning to the term "stress
induced anisotropy”.

The presented theory did not address the question of elastic defor-
mations and the important topic of pressure-sensitivity of granular
materials. The latter feature is of utmost importance to granu-
lar materials as it is well known that even a very dense sand can
behave as a seemingly loose material when sheared under high
confining pressures. In this respect it should be noted that recent
experimental studies by Been and Jefferies (1985) convincingly
demonstrated that major features of sand behaviour are controlled
not so much by pressure and density but by a potential for volume
change under given ambient stress conditions. The present study
has confirmed this result indirectly by demonstrating that stress-
strain relationships for plane systems depend only on volumetric
strain developed from the initial to critical state. Given the em-
pirical results of Been and Jefferies (1985), pressure sensitivity can
be easily introduced into the presented stress-strain relationships
by considering volumetric strain from initial to critical state to be
dependent on mean intergranular stress.
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