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Viscoplasticity and finite elements for landslide analysis
Viscoplasticité et éléments finis pour I'analyse des glissements de terrains
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SYNOPSIS:

An advanced elasto- viscoplastic model is presented.
of Desai and coworkers (the hierarchical approach) : ] ]
finite element formulation is derived and the algorithm is given in detail.

It incorporates the plasticity model
in the viscoplastic framework of Perzyna. A
Two theoretical case

studies are treated, illustrating the solution procedure and comparing plastic and viscoplastic

solutions.

The model is finally used in the case of the "La Frasse" landslide, showing how the

proposed model can be advantageously used for analyzing slowly moving soil masses.

INTRODUCTION

Time dependent phenomena in soil mechanics can be
roughly grouped in three categories: consolidation, creep
and combination of both. The first group has been
extensively studied; here the time dependent behavior is
conditioned by the seepage characteristics and the
compressibility of the soil skeleton; as a first
approximation the fluid compressibility may be neglected
as well as the viscosity of both constituents (fluid and
solid). Usually, a simple constitutive model for the soil
skeleton is used (linear or nonlinear elasticity) but
generalization to elastoplasic models is straightforward.

Creep phenomena were first studied in the context of
secondary consolidation (volumetric creep) and creep of
slopes (mainly deviatoric creep). However, most of the
advanced studies in this field concern metals at high
temperatures (see a review and evaluation in Inoue,
1987). These results may be applied to soil mechanics to
some extent as we will do in this paper. The last
category (coupling of viscous behavior and consolidation)
is a challenging area that has rarely been touched
without extreme simplifications. We will be concerned
here by the second group only.

There are several different ways of incorporating time-
effects in a constitutive model. The integral description is
one possibility; the Volterra-Boltzmann equation of
hereditary creep (viscoelasticity) is another example and
more recent theories like the endochronic theory
(Valanis, 1971) may be seen as an extension of this
approach.

The other, more frequently used description is the
differential approach. A single constitutive equation
suffices to describe what is often referred as "creeping
materials", for example a relation between the strain rate
and the stress (see a review of these and other models for
soils under slow movements in Vulliet and Hutter, 1988).
Additional equations are needed to describe visco-plastic
materials.

A "hardening visco-plastic material" is described by a
rate independent yield surface, a viscous flow rule and an
elastic constitutive equation for stress. Such a material is
suitable for soils under slow strain rates (quasi-static
loading). One important member of this group is the
Pezyna's model (Perzyna, 1966); it has been applied to
soil mechanics problems by different authors (see Desai
and Zhang, 1987).

ELASTO-VISCOPLASIC MODEL

Perzyna’s theory of visco-plasticity is very similar to the
usual plasticity. The basic ingredients will be summarized
hereafter for the small strain situation. The symbolic
notation is wused; bold letters represent vectors and
matrices.

The total strain tensor € is additively decomposed into
an elastic part e¢ and a viscoplastic part VP :

€ =€+ evP (1)

The idea here is to incorporate both plastic and viscous
strains into a single component as it is practically (at the
experimental level) impossible to distinguish between the
two. Taking the material time derivative yields

€ =€t + €vP (2)

The time derivative of the constitutive equation for the
stress is

0= Ce e (3)

where o is the stress rate tensor and Ce¢ is the elastic
constitutive matrix. Note that this equation satisfies
material objectivity only for small strains and small
rotations.

Tghc:6 viscoplastic strain rate is expressed as (Perzyna,
1966)

e =y oF) 92 (@)

where 7 is a fluidity parameter with units of inverse
time, ¢ i1s a scalar function of the yield function F and

is a viscoplastic potential. Functions F and Q are define
later. By analogy with plasticity, the "associative
viscoplasticity” is defined by QZ=F.

The <> notation implies

¢(F) = ¢(F) for F> 0 (5a)
¢F) =0for FS0 (5b)
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The direction of the viscoplastic strain rate eVP is defined
by the quantity 9Q/de and its magnitude is a function of
the distance to the current yield surface. Figure 1 shows
contours in the stress invariant plane for the function ¢
in the case of Desai’'s hierarchical § model (Desai et al..
1986) and Drucker-Prager model. Here J; and J,p are
the first stress invariant and second deviatoric stress
invariant, respectively. The §-model will be used in this

aper.
’%’he most popular expressions for ¢(F) are the power law
F = [ 6a
9(F) IF3| (6a)

and the exponential law

#(F) = exp

.
FSIN'] (6b)

where N is a material parameter and Fy a normalized
constant with the same units as those of F. Other
possibilities are mentioned in Vulliet and Hutter (1988).

(a) (b}

F=const 0 V420 —F = const» 0

Figure 1: Contour lines of F=0 in the case of a) Drucker

- ;ager and b) Hierarchical §-model (Desai et al., 1986,
1987)

Yield function

We use here the yield function F derived from the
hierarchical concept (Desai et al. 1986, 1987) and given

by

Fa JZD - Fb Fs (7a)

with
Fb-[-a.h" +'.71|2] (7b)
F=(1-8S,)m (7¢)
S = —— J3p Jop¥? (1d)

n, 7. § and m are material constants and J3p is the third
invariant of the deviatoric stress. @ is the hardening
function, one possible form being

a= —8_ (8)
(Evp)ﬂ

where a and n are hardening constants and Evp is the
trajectory of viscoplastic strain given by

fup =/ (deypT dey)1/2 9
An other form of the hardening function a (as proposed

by Desai and Hashmi, in press) is used in this paper,
namely
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a=p,el (10a)
with

E d
;‘ 'nl Evp 1- YD (IOb)

Bo + m Evpd

where §,, 71, Ay and n, are material constants and Evpd is
the trajectory of the deviatoric viscoplastic strain.

Viscoplastic potential

The viscoplastic potential Q in expression (4) has a form
similar to the yield function F (eq. 7) except that the
hardening function @ is replaced by a new function aq
that includes the nonassociative parameter k. One
possible form is:

aQ=a +k(agg - @)

| - fvp" ] (11
¥ )

'an

where ag is a material constant and EvpY is the trajectory
of the volumetric_viscoplastic strains. Note that for «=0
the model is associative.

Discussion

The viscoplastic model presented here can be
characterized by the followings:

There is no time-dependent (viscoplastic)
deformations if the stress state is inside of the yield
surface (see eqs 4 and 5).

A state of stress outside of the yield surface will
generate viscoplastic strains. This increases the
amount of accumulated viscoplastic strains (EVp),
modify the value of the hardening function a and
as a result change the position of the yield surface
F. When F "captures" the stress point, then the
displacement ceases.

Any stress point lying between the current yield

surface F and the ultimate surface (given by a=0 in
eq. 7b) will provoke a transient creep phenomenon.
For tsoco the result obtained by the viscoplastic
model tends to the one given by the inviscid
plasticity model (see Desai and Zhang 1987).

A stress point outside of the ultimate surface will
provoke a secondary creep response (constant
strain rate). Cormeau (1975) pointed out that in the
context of limit analysis, the solution obtained
when the movements stop is a lower bound while
the solution obtained when the movements
continue at constant rate is an upper bound.

FINITE ELEMENT SCHEME

The basic finite element scheme used here has been
presented in detail in Desai and Zhang (1987). A slight
modification will concern the hardening behavior and the
procedure of successive iterations inside of a time-step
(im%licit scheme).

The viscoplastic strain rate at time n+l is obtained by
using a Taylor serie around time n as



: ; de
Evpml - fvpn + __Q_B"o n Agn

e d¢
+ a_s% . AEvpn + —:‘;Lv N (AEVPV)n

(12)

where €,," is the viscoplastic strain rate vector at time n,
Aon is the incremental stress vector applied at time n and
At,p" and Ak, V0 are the induced increment of total
-respectively volumetric- viscoplastic strain trajectories at
time n.

The last two terms incorporate the fact that hardening
occurs during a time increment. This was proposed by
Marques and Owen (1982). The viscoplastic strain
increment during a time interval At? = 8+l _ 0 js written
as

Ag,pP = At [(1-0) Evph + 0 evan] (13)

For 6=0 the well known explicit Euler algorithm is
obtained. It was recommanded by Cormeau (1975) as a

simple and useful solution. It is however weak as far as

?g%l)'acy and stability is concerned (Hughes and Taylor,
Based on numerical studies reported by Katona, Desai

and Zhang (1987) recommand using 8=0.5.

Substituting (12) in (13) yields

Ae " = Atn [évpn + 8 G" Ao + 6 hP ] (14)

with
0 |2y
Gr = —&,L (15a)
de de
S bl TR a—::L " (akpv)n (15b)

The stress increment is then evaluated from eqs. (3) and
(14). Further manipulations yield

Aoh = Cn [Ae" - At [évp“ + 8 hn ]] (16)
with
Cna(]+ CeAtng Gn)l Ce 17

The increment of viscoplastic strain trajectories is found

more easily by using Euler’s rule at that stage. We then
obtain

Akyp" = AP y ¢(F) {%9 %9]'/2 (18a)

Ab, VD = AtD F 1 [ 9 3
vp v o) o [5a—?l—+ o+ AL (18b)

The general finite element equilibrium equation is given
as

JBT Aan dV = AQP (19)
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where B is the strain-displacement matrix and AQ" is the
vector of applied nodal loads at time n. Noting that in

eq. (16) the increment of strain AeM can be expressed as a
function of the nodal displacements Aq? by the equation

Aet = B AqP (20)

we obtain the finite element equation as

Kn Aqr = AQp 1)
where
A = AQn + [ BT Cn Am [‘evpn + ahn] dv (22a)
Kn = /BT Cn B dV (22b)

It is evident from (21) that this formulation is very
similar to the one of inviscid plasticity. The only
difference is in the form ol the constitutive matrix C
(replaced by CeP in plasticity) and the modified load

vector (AQp # AQ0).

Algorithm

The preceding equations contain all the necessary
ingredients to compute the strains and stresses al time n
when these quantities are known at time n-1. This step
will be called iteration 0. We will then show how to
improve the solution at time n by successive iterations.

lteration 0

1. Solve Ko Aqg" = AQP

2. Compute Aep" = B Aqph

3. Compute Aogg" with eq. (16)

4. Update oph = g;"! + Agg"
The solution Aqg? Agg" can be improved by successive
iterations inside of the time-step n. An improved solution

is written as:

Ao|" = Agg" + AAogg"
Aq " = Aqg" + AAqg? (23)

The first terms of the right hand side are known from
the iteration 0. By posing:

évpln = évan + Gon AAOon (24a)

G " = Ggm (Euler's assumption) (24b)
and taking AAop" from eq. (23a) we obtain, after
_r:lampulatlons, the following procedure for the first
iteration:

Iteration |
I. Solve Kyn AAgo™ = AQn - JBT Agyn dV
with K=/ BT G B dV

and G = (1 + Ce At (148) Gon )-! Ce
2. Compute AAey™ = B AAqq"
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3. Compute AAdgh = Gy AAeg®
4. Update AgM = AgpD + AAggh

This procedure can be simplified and the computer time
costs reduced if, as an approximation, the stiffness matrix

K is not updated during the iterations (K = K).
Iteration i

Repeat the above steps with the new indices i for 1
and i-1 for 0. The iterations are stopped when a
specified convergence criterion is satislied or after a
given number of iterations.

EXAMPLES
Isotropic compression

Fig. 2 shows the result of an hydrostatic compression test
on an axisymmetric specimen shown in the figure. The
finite element mesh consists of four 8-nodes
isoparametric elements with boundary conditions as
shown on the figure. The isotropic stress applied is 0; =
0, = 03 = 91.4 kPa (I3 psi). The material is characterized
by the following constants: E = 75790 kPa (11000 psi); » =

0.29; ¥ = 0.4595; f = 0.3624; m = -0.5; n = 2.5; f, =
88(3)‘51_1’ N = 450; k = 0.29; ap = 0.013; B, = 1.02; 1) =
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Figure 2: Isotropic compression test. a) Vertical

displacement of point A as a function of time; b) imposed
boundary-stress history

The solid line (a) in figure 2 represents the vertical
displacement of the point A shown on the mesh when
the plastic model is used. The curve (b) represents the
displacement as a function of time for the same point A
when the viscoplastic model is used with the power law
(eq. 5a) and the following constants: ¥ = 10-9 T-1: N = 3;
Fg = 1.0; At = const = 0.01 T; 8 = 0.5 (note that T stands
for any time units). The load history is given in figure
2b

It can be seen that the viscoplastic solution converges
toward the plastic solution. Further, during the period of
constant load (starting at time-steg 10) the movement is
the one of a "primary creep" (with decreasing strain rate)
as described in the discussion above.
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Conventional triaxial compression

In this example, the same specimen (same material) is
subjected to a different load history. An isotropic load is
first applied (same as above), and then the vertical load is
increased (Aoy = 372.6 kPa (53 psi)) while keeping the
horizontal load constant (Ag; = Aoz = 0), corresponding
to a conventional triaxial compression test (o, > 0, = 03).

Figure 3a contains results from plastic and viscoplastic
analysis. The solid line (a) shows the vertical
displacement of point A (as before) for the plastic (time
independent) analysis. The other curves correspond to
different viscoplastic analysis induced by the load history
shown in [igure 3b.

Curve (b) is obtained using the previously defined

viscoplastic parameters and no iteration within a time

step: the solution is unstable. This is because of the use

of a large time-step. When this procedure is used (no

iterations), the length of the time-step must be controlled

ilngsgrder to guaranty stability (see Marques and Owen
).

Curve (c) is obtained with 2 iterations and curve (d)
with 5 and 10 iterations. These solutions are stable but
not necessarily accurate. The accuracy can be improved
in reducing the size of the time-step. This was done for
curve (e) where the time-step is one half of the previous
one (At = const = 0.005 T).
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Figure 3: Triaxial compression test. a) Vertical

displacement of point A (see Fig. 2) with time for
different assumptions; b) imposed boundary-stress history

La Frasse landslide

The La Frasse landslide lies in the Swiss Alps, 60 km
east of Lausanne. It covers an area 2000 m long by 400
m wide; it is about 60 m thick and has a mean slope
angle of approximately 13° The long term sliding
velocities are between 10 and 50 cm/year. This site is
described in Vulliet and Hutter (1988b) where a viscous
3D analysis with finite differences is presented. Here we
will perform a 2D viscoplastic analysis using the

proposed finite element formulation and compare the
results of the two approaches.



The finite element mesh is presented in Figure 4. It
consists of 132 isoparametric eight-nodes elements and a
total of 491 nodes. Note that in the figure the vertical
and horizontal scales are different.

As in Vulliet and Hutter (1988b), the groundwater level
is assumed to coincide with the free ground surface. This
assumption comes from field observations and is not a
limitation of the numerical model.
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Figure 4: Finite element mesh for the "La Frasse"
landslide

The displacement of the soil mass is characterized by
strong shear deformations in the vicinity of the sliding
surface (or base) of the landslide, and a solid-body type
of motion for the upper sliding mass. As a consequence,
two materials are considered. Material 1 represents the
sliding mass and material 2 the -weaker- sliding surface
zone. For this analysis the sliding surface zone is
represented by thin solid elements (effective thickness of
5 m) but interface elements could have been used as well
(e.g. the thin-layer elements, Desai et al. 1984)

The material parameters are shown in Table I
Assuming that the angle of internal friction is the same
for both triaxial compression and extension test, that is
¢c = ¢ = 12° for the material 2 (interface), we find the

(plagrg;r))eters p and ¥ following Desai and Wathugala

12
tanGC =
i tanBE
f = = and F-- _anfg (25)
1 lan9c = 1 L
+ [—a—n—ag ( -5)
with
tand 2 sindc (26a)
c-
" V3 (3 - singc)
tanfg = —2SI09E (26b)

V3 (3 + singg)

For the sliding mass the angle of internal friction is taken
as ¢c = ¢ = 25° and equations (25) and (26) determine

the values of  and ¥ given in Table 1.

As no data are available concerning the hardening
behavior, the hardening function a is taken as a=0 with
B.=D in eq. (10a). As a consequence the values ol n, 1,

Ny and B, are chosen for computational purpose only and
tneir actual values will depend on (laboratory) test data;
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this aspect is being studied. Note that even with this
simplification the §-model is different f[rom the Drucker-
Prager model because § in eq. (7¢) is not equal to zero
(in the w-plane the yield surface is not a circle).

For the same reason of lack of test data at this time we
will assume that the flow rule is associative, that is x=0 in
eq. (11). The power law (eq. 6a) is assumed for viscous
strains with values given in Table I; they are derived
from the previous analysis by Vulliet and Hutter(1988b).

Table 1. Parameters used for La Frasse. a) Material
parameters and b) time integration parameters.

Parameter Value Units
at Mat. 2

a) E 79200 same kPa

v 0.29 same -

¥ 0.025 6.313 103 -

g 0.513 0.2707 -

m -0.5 same -

Ba 0 same -

K 0 same -

¥ 4.34 101! same s-1

N 2 same -

Fo 105 same (kPa)?
b) At 2.7 106 s

0 0.5

The results are presented in Figure 5. The solid dots
represent long term velocity measurements. Curve a)
corresponds to the present analysis; the plotted velocities
represent long term conditions after application of in-situ
stresses. Curve b) is taken from the viscous analysis by
Vulliet and Hutter.

B
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N &0
E \
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> b
' 2 ,.4’;‘ a
S Wt 7o T e -
w iy :‘.‘\1\‘»~/\‘/ \ — _;
= 3

0 500 1000 1500

X [m]

Figure S: Longitudinal velocity distribution for "La

Frasse". Comparison between measured values (full dots),
present analysis (curve a) and previous analysis by
Vulliet and Hutter {988b (curve b)

It can be seen that the results are consistent with
measured data and previous viscous analysis. In the
lower part of the landslide (x>1500 m) the analysis
underestimates the velocities. This is due to the fact that
identical material parameters have been used along the
entire sliding surface. In situ tests have shown that the
material in the lower part is weaker than in the upper
part. Moreover, due to the complex geology of the
region, the lower part of the landslide is experiencing
artesian water pressures that are not considered in this
analysis. Fine tuning of the model will allow for a better

simulation (back-prediction) of the real behavior and
then an evaluation of remedial measures as drainage,
anchors or retaining structures.
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CONCLUSION

The presented finite element scheme is considered to be
stable and accurate. The viscoplastic approach can be
used for example for analyzing time-dependent slope
deformations; the formulation is such that
inhomogeneities and local effects like anchors or
retaining walls can be incorporated, what was not
possible in the previous dimensional analysis by Vulliet
and Hutter. Some of the future improvements being
considered are (1) material constants based on laboratory
tests for the soil and interface zone and (2) incorporation
of large displacements.
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