
INTERNATIONAL SOCIETY FOR 

SOIL MECHANICS AND 

GEOTECHNICAL ENGINEERING 

This paper was downloaded from the Online Library of 
the International Society for Soil Mechanics and 
Geotechnical Engineering (ISSMGE). The library is 
available here: 

https://www.issmge.org/publications/online-library 

This is an open-access database that archives thousands 
of papers published under the Auspices of the ISSMGE and 
maintained by the Innovation and Development 
Committee of ISSMGE.   

https://www.issmge.org/publications/online-library


10/13

Probabilistic models for axially loaded bored shafts 

Modèles probabilistes pour des fuits forés avec charge axiale

F.OBONI, Dr, President, Oboni & Associates, Inc., Mortens, Switzerland

SYNOPSIS:This paper considers the probabilistic evaluation of the performances of a single slender 
elastic element such as a bored pile installed in a multi-layered soil system without noticeable 
displacement of the soils. The element is loaded with axial forces applied at its head, near the 
ground surface. The principal parameters of the study are considered as stochastic variables. The 
evaluation of the vertical and horizontal stresses and the shear resistance along the shaft are based 
on classical soil mechanics. The proposed procedure is used to evaluate the performance of an 
idealized deep foundation.

1. INTRODUCTION

In 1983 an investigation concerning the various 
aspects of the analysis of deep foundations was 
carried out. The results (Focht S O'Neil,1985) 
dramatically point out a generalized lack of 
confidence towards classical methods of analysis 
and the desire of practitioners to use basic 
soil mechanics. The number of existing empirical 
methods shows very well the difficulties that 
still exist in the modélisation of the load 
transfer from the shaft to the soil 

(Chaplin,1977).

The aforementioned investigation yields the 
formulation of a number of general interest 
questions such as the following:

1)Is it possible to formulate simple models 
allowing to forecast behaviour of a deep 
foundation in a more realistic way than with the 
help of classical methods?

2)How can the factor of safety be replaced by a 
more rational set of safety qualifiers?

3)Is it possible to take into account the 
scatter of the pertinent parameters?

4)How is the reliability of a bored shaft 
influenced by the increasing level of 
information acquired on a particular site?

5)How can we solve in a simple and pragmatic way 
the problem of the interface between the shaft 
and the soil?

This paper deals with probabilistic models 
(Oboni,1988) that attempt to reply to the 
aforementioned questions. The models apply to 
single slender elastic elements embedded in a 
multi-layered soil system loaded by an axial 
force at their head. Only the elements installed 
without noticeable displacement of the soil are 
taken into account. The stress-strain 
relationship for each of the soil layers is the 
perfectly rigid-plastic Mohr-Coulomb failure 
criterion, or a model taking into account the 
progressive mobilization of the shear resistance

as well as the post failure behaviour, titled 
the elastoplastic model.

2. PHENOMENOLOGICAL ASPECTS

Skempton (1959), Whitaker & Cooke (1966), Reese
& al. (1969), O'Neil & Reese (1972), Biarez 
(1977) and Broms (1982) have effected, among 
others, numerous observations on the behaviour 
of shafts during load tests, which can be 
roughly summarized as follows:

• The axial stresses on a loaded pile decrease 
in function of the depth.

■ The lateral friction is mobilized in function 
of the displacement under loading.

• The shaft tip is stressed when the applied 
load is high enough to mobilize an important 
fraction of the shaft resistance.

• The shaft resistance is generally mobilized 
for displacements of the head not exceeding 2% 
of the diameter.

■ The tip resistance is generally mobilized for 
displacements approximatively equal to 10% of 
the diameter.

■ The shearing occurring along the shaft surface 
can be considered as a drained shear (Chandler
& Martins,1982).

• Only a very thin cylinder of soil around the 
shaft is actually deformed when the load is 
applied (Chandler & Martins, 1982, Potts & 
Martins,1982).

3. CLASSICAL METHODS

Classical methods of analysis of the bearing 
capacity implicitly assume the independence of 
the resistance of the shaft and the resistance 
of the tip. Since these two resistances can be 
fully mobilized for different displacements, it 
would be necessary to compute them with 
different values of the parameters, especially 
when dealing with dense or overconsolidated 
soils. The use of partial factors of safety can 
be helpful in dealing with this, but certainly 
does not help in understanding the actual 
phenomenon.
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Elastic settlement analysis methods became quite 
popular (Poulos & Davis,1968, Poulos & Mattes, 
1969, Mattes & Poulos,1969) because they allow 
the analysis at a preliminary design stage and 
can be used by means of design charts. Methods 
based on the empirical load transfer analysis 
were less used because of the necessity of 
transfer functions that require costly 
investigations. Finally, the methods based on 
the theoretical load transfer analysis demand 
the determination of costly parameters (Kraft, 
Ray & Kagawa,1981).

4. CHOICE OF THE PERTINENT STOCHASTIC VARIABLES

a„'= effective vertical stress due to depth 
< p ' ,c' =  effective shear parameters 

K = a ■K o ,ocr

For the reduction factor a , Meyerhof suggests 
0.75, whereas we use 1.00, but one has to 
consider in the determination of Ko.ocn, the 
formulation of Mayne & al. (1982) is applied, 
which leads to significantly lower values of 
K o ,OCR than those used by Meyerhof.

i
c v i = 2  (¥*: Z * )  ( 1 )

k=l

In order to choose the pertinent stochastic 
variables, sensitivity analyses on the variances 
of the functions of these variables have been 
performed. Finally, six parameters have been 
chosen because their variability had the biggest 
impact on the variance of the functions in which 

they enter.

a)Applied load, P0 .
b)Depth of the water table, hw .
c)Overconsolidation ratio, OCR (each layer).
d)Elastic modulus, E, of the soil below tip.
e)Shear effective parameter, c' (each layer).
f)Shear effective parameter, <p' (each layer).

The unit weight ¥, the shaft diameter d, and the 
elastic modulus of the shaft Ep , have been 
considered as deterministic variables, which 
represents a considerable economy in 
computational time.

5. DEVELOPMENT OF A RIGID-PLASTIC MODEL

A first model has been proposed based on the 
rigid-plastic behaviour of the soils in the 
multi-layered system and on an elastic reaction 
of the soils below the shaft tip. Although basic 
classical theories are used, the present study 
differs from known state of the art methods 
because a new transfer method based on the local 
mobilization of the shear resistance along the 
shaft has been developed for the anticipated 
ultimate load and for the evaluation of the 
load-deformation behaviour. This model is based 
on simple equations of limit equilibrium, solved 
in probabilistic terms by using the 
Rosenblueth's (197 5) two point estimate method 
(PEM) for independent skewed variables.

5.1 Analysis of the shaft
The shaft is discretized into n elements, 
numbered from 1 at the soil surface to n at the 
tip. This discretization is carried out in such 
a manner that the interstrata correspond with an 
inter-element joint and the elements are 
approximatively of the same size. If the soil 
can be considered homogeneous over a large 
depth, then spatial variability techniques 
leading to the determination of the 
autocorrelation length can be used to define the 
discretization mesh.

The analysis is carried out from element 1 down 
to n in the following manner.

The stresses acting normally to the shaft axl 
and the lateral resistance t 'h  are evaluated 
for the first element (equations 1 to 6).

i
Ui=(Z(z*)-hw) ¥w (2)

k=l

0'v i=0vi-Ui (3)

Following the Mayne & al. (1982) simplified 
relationship for K0 ,0 cfi one has:

K o . o c  =(l-sin0') OCR-1"*- (4)

o ’ h = K -  a'v (5)

T ,ii=ali r t a n 0 1 l+c1 1 (6)

Ci=T1i i ’P i •li (7)

where:

t 'h  = shear stress along the first element 
Pn. = perimeter of the element section 
li = length of the considered element

The evaluation of the capacity (equation 7) 
using the rigid-plastic method is reliable given 
certain restrictions such as a)soils without a 
peak value in their stress-strain relationship 
(i.e. to use a peak-valued soil one would 
literally have to "guess" its resistance not 
knowing actual deformations) and, b)soils with 
maximum resistances obtained over very small 
displacements. For most slender shafts the 
displacement/deformation is large enough in the 
upper portion to reach the maximum resistance 
while, in the lower portion of the shaft, only a 
fraction of this resistance is mobilized.

The demand Di, equal for the first element to 
the applied load P0 .

The safety margin of the first element is

SM1=C1-Di (8)

The SM is a force with a positive sign if the 
capacity overcomes the demand, negative if the 
reverse is true. One can define the SM as a 
performance function of the structure and the 
equation SM=0 as the performance equation of the 
considered system.

Equation 9 defines the reliability index B, 
given the first two moments of SM.

fl=SM/as„ (9)

The transfer force to the element i+1 is defined 
by equation 10.

The Meyerhof (1975) standards are used, namely: P 1=D1-Ci=-SMa. (10)
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The analysis is performed for the second element 

of the shaft and the operation continued for all 

the elements down to n with the equations 11 to 
15.

Di-Pci-i) 
t  ' t a n « ÿ i  '+ci1

C i = T . i i P i l i  
SMi=Ci-Di 
Pi=-SMi

(11)
(12)

(13)
(14)
(15)

The intensity of the transfer force P £ decreases 
for each element towards the tip as shown in 
Figure 1.

It is interesting to note that in the preceding 
formulas there is no restriction on the sign of 
the transfer force thus leading to results that 
could be physically inconsistent with the 
meaning of the transfer force. As the evaluation 
of the moments of the functions of stochastic 
variables is performed by using a second moment 
method (Rosenblueth,1981), it is necessary to 
make assumptions on the distribution of the 
force Pi.

(i-l)

*11

P*.„= A to N „ ) - W

where:

(16)

Ato= tip surface 
o'vto= effective stress at the tip depth 

N,a= shape factor 
W'= bouyant weight of the shaft

Figure 2. Cut-off function for compressive 
forces distributions.

If one assumes that W's> Ato o'vto the following is 
obtained:

Pbu= W •(N„-l) (17)

The available tip resistance is evaluated by 
assuming that the shape factor N„ is

(18)

Figure 1. Decrease of the transmitted force due 
to the load transfer to the soil.

As Pi is the "mirror image" of S M t it would be a 
priori correct to use for Pi the same 
distribution as for SMi. Unfortunately, since 
the normal distribution does not have finite 
bounds, its use can lead to erroneous results if 
the variable should be physically limited to 
zero and its expected value is low.

In order to obtain physically reasonable results 
it is therefore necessary to use computational 
tricks such as a "cut-off function" that 
transforms the normal distribution (with a non- 
negligible negative branch) into a distribution 
with a lower bound equal to zero (Figure 2).

5.2 Analysis of the tip
At the tip, the remaining transferred force P„ 
has to be compared with the available resistance 
PtoVi which can be evaluated by using the 
classical formulas.

5.3 Analysis of deformations
The deformation analysis is based on the 
evaluation of the elastic shortening dli of the 
elements with cross section Ai, stressed by the 
normal load Ni.

dli =
Ni • 1 1

A i E ,
(19)

The settlement of the soil mass below the tip is 
carried out (Coyle & Reese,1966 and Kraft & 
al.,1981) with the help of Boussinesq’s theory.

The settlement of a circular plate with a 
diameter d, installed in depth in a soil mass 
characterized by a modulus E and a Poisson's 
coefficient of n, loaded by a force P can 
therefore be expressed by:

P- ( W )

2 • d • E

where, following the elastic theory:

Ko

(20)

(21)

1 + Ko

At each level along the shaft z, the settlement 
is equal to the cumulative of the elastic 

shortenings dli of the elements n to i, plus the 
tip settlement namely;
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n
i,= E ik + ib (22)

k=i

6. DEVELOPMENT OF THE ELASTOPIASTIC MODEL

The model developed is based on an iterative 
cycle that re-evaluates the capacity and demand 
for the elements of the shaft by taking into 
account the displacements. These initial values 
of capacity and demand are derived from the 
rigid-plastic method using peak values of the 
shearing resistance for each soil layer.

The analyses performed with this model have 
shown that the iterative algorithm converges 
generally well, but as with most iterative 
methods, some convergence problems can occur 
given particular situations.

6.1 Choice of the stress-strain relationship
Since the model can be developed independently 
from the definition of the stress-strain 
relationship and that this definition was not 
the major concern in this research, the 
selection of the bi- and tri-1inear models 
already developed in the literature 
(Murff,1980), was made taking into account the 
simplicity as a major criterion. These models 
were then transposed into probabilistic terms 
(Figure 3).

T [ k N - m - 2 ]

Figure 3. Transposition of Murff's bi- and tri- 

linear models into probabilistic terms.

A three point estimate method useful for the 
evaluation of the moments of functions of 
stochastic variables was developed for this 
study because it can be shown that the 
discretization by two point estimates can yield 
erroneous results when applied to relationships 
similar to the stress-strain function of dense 
soils. The three point estimate method for 
symmetrical independent variables has been 
presented by the author for publication.

6.2 Analyses of results
Some of the first analyses using the 
elastoplastic model have shown that the 
probabilistic approach smoothens the bi- and 
tri-linear relationships and that if the 
displacements are very scattered a significant 
decrease of the average shear resistance can be 
observed for a wide range of average 
displacements.

Moreover, it was remarked that the elastoplastic 
method yields greater displacements than the 
rigid-plastic method and that an increase of the 
scatter of the elastic modulus of the soils 
under the tip results in an augmentation of the 
expected settlements at the shaft head.

A comparison carried out between the proposed 
method and the elastic method of Poulos & 
Davis,1980 showed good agreement of the results.

7. CONVERGENCE ANALYSIS

Extensive analyses have been carried out in 
order to determine the influence of the 
discretization on results yielded by the 
developed method. It is observed that the model 
has a sensitivity comparable to other classical 
methods routinely used in geotechnical 
engineering, that is, as long as a minimum 15 to 
20 elements are used, the results do not vary.

8. SAFETY QUALIFIERS AND DESIGN

As a result of the developed models, it is 
possible to make some comments relative to the 
qualification of the safety for bored shafts.

As previously pointed out, the lower portion of 
a long shaft can be stressed by negligible 
average transfer forces at the level of the 
service load. In these cases the classical 
concept of factor of safety obtained by 
combining tip and shaft resistance under the 
implicit assumption of their independence and 
dividing this value by the service load can lead 
to fallacious interpretations.

In these cases it would be more correct to 
introduce the notion of Supplementary Load 
Factor (SLF) defined as the smallest value 
between the values Ft=P*to/P. (the structural 
factor of safety) and Fp,%=the ratio of the 
loading giving a failure probability p at the 
tip and P..

where:

P*b = ultimate load of the reinforced concrete 
section of the shaft 

P. = service load of the shaft

As a supplement to the SLF, the effective length 
L* concept can be introduced. This parameter 
defines the length of the shaft that is stressed 
by non-negligible forces when the head of the 
shaft is loaded with the service load. If L>L* 
then the shaft can be considered as long.

One can then define another indicator called the 
factor of effectiveness F.=L*/L of the shaft. In 
an economic design the F. should be kept as near 
as possible to unity, being understood that the 
settlement requirements have to be met.

As a quick review of the design criteria that 
can be developed by using the above mentionned 
qualifiers one can cite the following:

a)F. as 1

b)Fto > limiting value for the reinforced 
concrete section
c)Fp* * 1

The design can therefore be carried out 
following the methodology defined hereafter:
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i)Determination of the service load P_.
ii)Determination of the minimal cross section 
necessary to meet structural and installation 
requirements.

iii)Determination of the theoretical load 
transfer along the axis of the shaft into a 
multi-layered system representing the actual 
soils.

iv)Determination of the length of the shaft so 
that F„«l, which implies that L*L*.

9. SIMULATION OF A LOADING TEST

In order to explore the performances of the 
proposed models, a loading test was simulated. 
The geotechnical parameters and the shaft 
parameters are synthetized in Table 1.

Table 1. Loading test characteristics.

Shaft
length of shaft 
number of elements 
length of elements 
diameter of shaft 
concrete modulus E

= 32 m 
= 8 
= 4 m 
= 1 m 
= 2.1 107 KN • m-3

Soils

»1» Ox Xn In

V (KN-m~3) 20 0.5 10 26
OCR --- 1 0.1
<p' (degrees) 25 2.5 16 33
C'(KNm-=) 20 10 0 50
E (KN-m-3) 10000 3500

Water

Hx Ox Xnln Xmax

hw (m) 1 0.3 0 2

Stress-Strain Relationship
displacement for peak 3 mm
softening 20 % to 40%
displacement for full softening 6 mm

Loadings
Variable with constant C. O.V = 10%

The P0/*o diagrams in Figure 4 present the
classical curvilinear shape of shaft loading 
tests.

The load-deflection relationship defined by the 
simulation could be idealized by a tri-linear 
diagram with the breaking points at 
approximately Po=1900 KN and 6000 KN. For the 
loading stage of Po=6000 KN, the computed 
expected value of load transferred to the tip 
yielded by the rigid-plastic method is 760 KN. 
It is at loading stages of this magnitude (i.e. 
6000 KN for this example) that stresses at the 
tip are developed in a non-negligible way.

In order to show how the shearing resistance is 
gradually mobilized along the shaft, Table 2 
gives for each loading stage the probability p*± 
of exceeding the maximum shearing resistance 
along each shaft element. The results shown were 
obtained by using the rigid-plastic model.

Table 2. Variation of the probabilities of 
failure p*i[%] in function of the applied load.

S z -z 100 500 1000
Po

2000
[KN]
3000 4000 5000 6000

1 O'-4 2 85 100 100 100 100 100 100

2 4'-8 0 3 80 100 100 100 100 100

3 8 -12 0 4 97 100 100 100 100

4 12--16 0 30 99 100 100 100

5 16 -20 0 45 98 100 100

6 20--24 0 50 95 100

7 24 -28 0 40 90

B 28 -32 0 60

S
z-:! =

number
depth

of the considered 
at the end of the S

element 
segment (m)

8

-16

L*[m]

▼

Figure 4. Simulation of a loading test of an idealized bored shaft (see Table 1 for data),

Po[MN).

——  rigid-plastic model 

—  —  —  elastoplastic, softening 20X 

elastoplastic, softening 402 

_ _ _ _ _ _ _  effective length L*

-24 idealized tri-linear diagram

-32
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It is interesting to note that when the applied
load P0 increases from 5000 to 6000 KN, the
probability of failure of the 8th element 
dramatically increases from «0% to 60%.

As a result of analyses carried out by the 
author (Oboni,1980) it can be inferred that for 
the majority of the shafts installed in soft 
soils (stress-strain relationship without peak) 
and having typically standard proportions and 
rigidity, the rigid-plastic method of analysis 
can offer sufficient precision, being understood 
that, particularly in the lower part of the 
shaft, the assumptions diverge from reality. It 
is precisely in this lower region of the shaft 
that the deformations can be inferior to those 
necessary to the mobilization of the maximum 
shear resistance.

If the considered soils exhibit stress-strain 
relationships characterized by peak values and 
residual values obtained after large 
displacements, then the use of the rigid-plastic 
method should be avoided because of the 
uncertainty involved in the choice of the shear 
resistance for each soil at each level of the 
shaft.

10. CONCLUSIONS

The presented probabilistic models allow to 
forecast the behaviour of single, axially 
loaded, bored shafts embedded in a layered soil 
system. The scatter or the spatial variability 
of the pertinent parameters can be taken into 
account so that the influence of the increasing 
level of information acquired on a particular 
site can be shown. Moreover, new rational 
qualifiers of the safety have been defined.

A similar approach has already been presented in 
the area of slope stability by Oboni & Bourdeau 
(19B3) and Oboni, Bourdeau & Russo (1984).

The proposed models constitute an extension of 
these previous studies since the compressibility 
of the element is taken into account and 
consequently the deformations can be evaluated. 
It would be possible in the near future to 
integrate the results of this study with the 
slope stability analysis thereby increasing its 
potential.
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