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Applicability of 1 -g model tests in three cases 

L’applicabilité d’essais sur modèles 1 -g dans trois cas

E.FRANKE, Professor of Civil Engineering, Technical University, Darmstadt, F R G

SYNOPSIS: Among building materials soil is the most complex. Therefore model testing is in soil 
mechanics often the most accurate tool in order to derive load-deformation-laws. As scale effects are 
affecting the results lg-model tests (under simple gravity conditions) are applicable only in special 
cases. 3 examples are shown, esp. the pile group action problem for horizontal load.

Since LADANYI (I960) and DE BEER (1965) it is 
known that the bearing behaviour of soils is 
dependent on the mean normal stress.

(1)

This dependence is causing scale effects in mo­
del testing well known now, but mostly disre­
garded in the past. The need to control scale 
effects w b b  the main impact to develop centri­
fuge model testing. But as centrifuge testing 
is rather expensive it may be of interest to 
show that conventional lg-model tests are 
applicable with the same accuracy at least in 
three cases.

Case 1:
Derivation of an ultimate limit state equation! 
If the failure mechanisms in the soil adjacent 
to a foundation element (behaving rigid in this 
state) are the same in model and prototype 
(e.g. like for active earth pressure) then the 
same limit state equation (accounting for the 
different geometrical and shear parameters) is 
valid for both cases. Scale effects do not mat­
ter.

Case 2:
Derivation of geometry-factors: The load-de- 
formation-behaviour of foundation elements is 
affected by geometrical boundary conditions. 
The deviation in behaviour caused by changes in 
geometrical conditions can be referred to 
characteristic cases, i.e. they can be ex­
pressed as ratios or percentages of the behav­
iour in characteristic reference cases, e.g. by 
shape factors, by the slope inclination, by 
group action factors etc. Deriving these per­
centages experimentally by comparing the be­
haviour of foundation elements in the same 
scale, the results are valid independent of 
doing the tests in model or full scale, i.e. 
scale effects do not matter. The important pre­
sumption in this case is that the interesting 
load-deformation results obtained expe­
rimentally must be depictable by power func­
tions with the same constant exponent resp. by 
parallel straight lines in log-log-scale.

Case 3:
Derivation of load-deformation-laws for proto­
types by model tests:
The scale effect caused by equ.(l) now must be

taken into account. With lg-tests this is only 
possible by investigating a model family, i.e. 
a group of foundation elements of the same di- 
mensionless, but different absolute magnitudes. 
From the experimental results then the law can 
be derived a c c . to which the behaviour is 
changing with magnitude accounting for equ. 
(1). The presumption is again like in case 2 
that the interesting load-deformation functions 
must be parallel straight lines in log-log 
scale.

One example for each case show the appli­
cability of these principles.

Example 1 corresponding to case 1:
Quay walls and walls of pits of large width are 
normally back anchored. For the calculation of 
the required length 1 of anchors the failure 
mechanism of fig.l is used. Originally this me­
chanism was derived for an anchor wall parallel 
to the quay or pit wall (see fig.la and KRANZ, 
1936). For prestressed anchors or anchor piles 
the same mechanism is used as an approximation 
assuming a fictitious anchor wall at the centre 
of the friction transferring part L of the an­
chor, i.e. L* = L/2 (see fig.2b ). This assump­
tion is more or less reasonable for prestressed 
anchors which have a limited friction transfer­
ring length L<1 like in fig. 2, but for anchor 
piles with friction transfer over the whole 
length 1 its accuracy was doubted. Indeed model 
tests showed that the actual length L* is more
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or less deviating from L/2.
The derivation of L* ie shown in fig. 2 in 

connection with the derivation of the minimum 
value of the allowable anchor force Aain for an 
anchor length 1=16 m  and L=8 m. The required 
friction transferring length L is calculated 
beforehand using the anchor force A  from the 
wall calculation and the allowable friction re­
sistance q g all (always obtained by load tests)

L = A/n.d.qBall (2)

Then deep slip surfaces (e.g. 0...6) are drawn. 
For each of them the force polygon must be 
drawn (acc. to the Culmann-method) to find out 
for which polygon the minimum anchor force A j ^  
is obtained. As shown in fig.2 in the force po­
lygon (big drawn for the slip surface 3) the 
part of the anchor force acting outside the 
failure body

\)..VI = ^ o. .6*n ‘<*'<3e,failure

______] £ _

I i i 201*^1 ; r

M-

( 3 )
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be taken into :ount. A_,n 
value of the curve connecting jSq

Fi g.  2

is the minimum 
. . . Ag .

In the example of fig. 2 the minimum value A = 
265.1 kN/m is showing that the slip surface 1 
a c c . to the active earth pressure is connected 
with the extremum, leaving the whole friction 
transferring length L outdside the friction 
body, i.e. Lĵ  = L and the assumption of the 
fictitious anchor wall at L*= L/2 would be com­
pletely wrong.

This investigation has to be done repeatedly 
for different lengths 1 of the anchor to find 
out the required minimum of the length, 
however, always using the same values of L. The 
required safety factor is F = min A/A i 1.5.

Another result of theBe model tests was the 
justification to neglect deviations from the 
plain strain case.

About 60 model tests were done approving that 
the limit state equation acc. to fig.2 is work­
ing. The result is valid for model testB as 
well b b for prototypes. For more details and 
the analytical formulations see Heibaum (1987).

Example 2 corresponding to case 2:
Large bored or driven piles are mostly in­
stalled vertically because of costs; then ho­
rizontal loads on pile groups must be trans­
ferred by the lateral soil support of the pi­
les. In comparison with single piles the in­
teraction between the group piles deteriorates 
the load-deflection behaviour. This is of in­
terest up to deflections of 0.1 *d (d = pile 
diameter) which can be approximated by the pow­
er function:

—  = A
d ref

“0 Ho 
log —  = log A + n • log (---- )

d H_

( 4 )

ref

u0/d, H / H t 
resp. loacl at

are the normalized movement 
resp. loacf at the pile head.

Experimental evidence shows that the 2 cases 
of fig.3 (which are extreme limitations) must 
be distinguished: rigid piles and ® long flex­
ible piles. (In the latter case of elastic 
piles in non-linear behaving soil it is defined 
that the deflections do not reach the pile tip, 
the deflection curves for increasing loads then 
are self-similar to each other,s. Dietrich, 
1962. Only in these 2 cases constant exponents 
n reap, n,,, do exist.) By fig.4 toll the expe- 
imental results are shown and the model test 
rules are derived.

Fig.4 to 7 approve that the test results are 
straight lines in log-log-scale acc. to 
e q u .(4).
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On fig.4 the test results of a model family of 
rigid piles are shown which had equal di- 
mensionless magnitude 1/d, but different abso­
lute diameter (d = 1.8 to 25.8 cm). With in­
creasing d (and length 1) a (see equ.l) in­
creases causing the shown change in load de­
flection behaviour resp. the parallel devia­
tions in log-log-scale (see example 3, too).
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On fig. 5 it is shown that the exponents are 
constant, but different for rigid (n = tan 63°) 
and ® long piles (n,, = tan 55°). (For elastic 
piles with lengthB shorter than in the defined 
case of ® length no straight lines in log-log- 
scale do occur; n is decreasing with increasing 
load between n and n ^ . ) Furthermore it is seen 
that changes in density D are causing only 
parallel deviations in case of n resp. n,,, 
beeing constant in log-log-scale. From these 
(and other) test results it can be concluded 
that n resp. n,,, are constant (in homogeneous 
soil) for each soil type and independent of the 
actual soil condition expressed by D (or Ic for 
cohesive soils).

On Fig.6 it is shown that the different be­
haviour of piles with free movable and fixed 
head is expressed by parallel deviations in 
log-log-scale again.

On fig.7 results of tests on a pile row with 
equal normalized pile distances s/d acted on by 
the group force rig are shown. It revealed that 
the front pile behaves always like a single 
pile whilst all rear piles take the same but 
smaller load shares of Hq than the front pile 
at the same deflection (independent of the num­
ber of rear piles). The distance s/d is causing 
parallel deviations in log-log-scale again.

On fig.8 the results of all tests (including 
prototype tests of Schmidt 1986) with pile rows 
like the ones of fig. 7 are gathered and shown 
by the load factor = f(s/d) with

“l “ HGr^H0 ( 5 )

H q = load of a single pile at the deflection ufl 
HGr= load share of a rear group pile at the

deflection uG = u Q

-iV
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On fig. 9 the results of tests on pile rows 
across load direction with distances q/d are 
shown. Now it must be distinguished between the 
corner piles (index A) and the centre piles 
(index Z). It was experienced that the centre 
pileB took smaller load shares of the group 
force Hq than the corner piles in comparison 
with a single pile of the same deflection (uQ - 
uG ) independent of the number of centre piles, 
dependent on the pile distance q/d only. ThiB 
is expressed by the load factors

“qa = HGA/H0 

“t}Z = HG2/H0

(6a)

(6b)

From tests with groups consisting of pile 
rows along and across the group force direction 
results like on fig.11 were obtained. From 
these results it was learned that only four 
pile types do exist, schematically shown on 
fig.10:
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- Type 1

- Type 2

- Type 3

- Type 4

«GA = «QA^O - “l,H0

GZ “qz ' H n at, • H.

HGrA = “qA,aL'H0 = < V H 0 

HGrZ ■ “ QZ,aL*H0 = ° V H 0

For a individual group pile i the load factors 
a, = a 1  ̂ can be gained by simple superpo­
sition. Generally it is

Hi = <*i • H q ( 7 )

The group action factor is consequently in case 
of J piles

R - Ea1*H0/j.H0 = Eai/j (8)

and the load share of a group pile is

Hj/H,. = ot1.H0/2a1»H0 = (9)

for uG = u0 independent of the magnitude of uG .
It was learned in addition that the o^-values 

are independent of the boundary conditions at 
the pile head and -at least approximately- of 
the bending rigidity, i.e. no significant dif­
ference was obtained for a^-values of rigid and 
“ -long piles.

Summing up all these results it waB shown 
that in log-log-scale

log( —  ) - log £i( —  )+iog f2(D,ic ) + log f3(— ) +  
d oR d

lQg fi(-) + lQg f5 (6) +• 
d

Hj
+ n*log (-

ref

with aK as a suitable chosen reference value 
and 6 = degree of fixation of pile head. Now 
conclusions can be drawn towards a model test 
rule: Equation (4) can be rewritten in the form

u0 am 8 <î
—  = f x ( — ) « f a ( D , I c ) . f j ( - ,  - .  
d ov d d

H0 n
(7a)

ref

scale
effect

soil con­
ditions

geometrical
conditions

Comparing test results of group and single 
piles of the same type, in the same soil (with 
regard to type and actual condition) and in the 
same scale, then fx and f2 are the same and 

from equ.(7a) it follows

L3G

30

(--- ) (7b)

i.e. and f2 are cancelled, the scale effect

and the effect of the soil conditions vanishes, 
results are valid for model tests as well as 
for prototypes. It is seen that for = H0 a 
constant ratio reveals independent of the ex­
ponent n

3G

30

= A = const ( 7c )

For uG = u0 one obtains dependent on n 

Hi
—  = A u_1'n = A h = const (7d)

H0

The values a, , aQA, a_z and its combinations 
are of the A H-type. The neglection of their de­
pendence on n resp.n^ is content of the men­
tioned approximation. Further tests of more ac­
curacy may show refinements with different a^- 
values for rigid and infinitely long piles.

At least it is shown that the moduli of sub- 
grade reaction ku (acc. to the Winkler medium 
theory) must be decreased for group piles ap­
plying once more the a^-values: For kv = nh »z/d 
and oo-iong piles (1>4«L.) the deflection for 
the single pile is (witn L» of fig. 4 and C 
e.g. acc. to Matlock/Reese, i960)

u0 “ Cy * V  • V E - I  

and for the group pile

UG = Cy‘L0Gi3* (a i*Ho)/E*I 

Introducing now LQG1 = (E-I/nhG1) ^ 5 and u0 = uG

nhGi = a i5/3 -nh (8 a >

For rigid piles (1 < 2 • LQ)

“hGl “ °l * nh 

Interpolation for 4 • L0 < 1 < 2 • L0

For kh = const the corresponding values are for 

«»-long piles

(8b)

hGl
= a 4/3. K 

°i h

For rigid piles

khGl “ a i*Kh

(8c)

( 8d )

For more details see KlUber (1988), Franke 
(1988).

Example 3 corresponding to case 3:
This example was already shown in connection 
with fig.4. The derivation of a load-deflec- 
tion-law from these test results was shown bj 
Franke/Muth (1985).
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