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Applicability of 1-g model tests in three cases
L’applicabilité d'essais sur modéles 1-g dans trois cas

E.FRANKE, Professor of Civil Engineering, Technical University, Darmstadt, FRG

SYNOPSIS: Among building materials soil is the most complex. Therefore model testing is in soil
mechanics often the most accurate tool in order to derive load-deformation-laws. As scale effects are
affecting the results lg-model tests (under simple gravity conditions) are applicable only in special

cases. 3} examples are shown, esp. the pile group action problem for horizontal load.

Since LADANYI (1960) and DB BEER (1965) it is
known that the bearing behaviour of soils is
dependent on the mean normal stress.

y + oy)/3 (1)

This dependence is causing scale effects in mo-
del testing well known now, but mostly disre-
garded in the past. The need to control scale
effects was the main impact to develop centri-
fuge model testing. But as centrifuge testing
is rather expensive it may be of interest to
show that conventional 1lg-model tests are
applicable with the same accuracy at least in
three cases.

Op = (0 + O

Case 1:

Derivation of an ultimate limit state equation:
If the failure mechanisms in the soil adjacent
to a foundation element (behaving rigid in this
state) are the same in model and prototype
(e.g. like for active earth pressure) then the
same limit state equation (accounting for the
different geometrical and shear parameters) is
valid for both cases. Scale effects do not mat-
ter.

Case 2:

Derivation of geometry-factors: The load-de-
formation-behaviour of foundation elements is
affected by geometrical boundary conditions.
The deviation in behaviour caused by changes in
geometrical conditions can be referred to
characteristic cases, 1i.e. they can be ex-
pressed as ratios or percentages of the behav-
iour in characteristic reference cases, e.g. by
shape factors, by the slope inclination, by
group action factors etc. Deriving these per-
centages experimentally by comparing the be-
haviour of foundation elements in the same
8cale, the results are valid independent of
doing the tests in model or full scale, 1i.e.
scale effects do not matter. The important pre-
sumption in this case is that the interesting
load-deformation results obtained expe-
rimentally must be depictable by power func-
tione with the same constant exponent resp. by
parallel straight lines in log-log-scale.

Case 13:

Derivation of load-deformation-laws for proto-
types by model tests:

The scale effect caused by equ.(l) now must be

taken into account. With 1lg-tests this is only
possible by investigating a model family, i.e.
a group of foundation elements of the same di-
mensionless, but different absolute magnitudes.
From the experimental results then the law can
be derived acc. to which the behaviour is
changing with magnitude accounting for equ.
(1). The presumption is again like in case 2
that the interesting load-deformation functions
must be parallel straight 1lines in 1log-log
scale.

One example for each case show the appli-
cability of these principles.

Example 1 corresponding to case 1:

Quay walls and walls of pits of large width are
normally back anchored. For the calculation of
the required length 1 of anchors the failure
mechanism of fig.l is used. Originally this me-
chaniem was derived for an anchor wall parallel
to the quay or pit wall (see fig.la and KRANZ,
1936). For prestressed anchors or anchor piles
the same mechanism is used as an approximation
assuming a fictitious anchor wall at the centre
of the friction transferring part L of the an-
chor, i.e. L* = L/2 (see fig.2b ). This assump-
tion is more or less reasonable for prestressed
anchors which have a limited friction transfer-
ring length L<l 1like in fig.2, but for anchor
piles with friction transfer over the whole
length 1 ite accuracy was doubted. Indeed model
tests showed that the actual length L* is more
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or less deviating from L/2.

The derivation of L* s shown in fig.2 in
connection with the derivation of the minimum
value of the allowable anchor force A, for an
anchor length 1=16 m and L=8 m. The required
friction transferring length L 4is calculated
beforehand using the anchor force A from the
wall calculation and the allowable friction re-
sistance 9q,a11 (always obtained by load tests)

L = A/med-q, o) (2)

Then deep slip surfaces (e.g. 0...6) are drawn.
For each of them the force polygon must be
drawn (acc. to the Culmann-method) to find out
for which polygon the minimum anchor force

is obtained. As shown in fig.2 in the force po-
lygon (big drawn for the slip surface 3) the
part of the anchor force acting outside the
failure body

-
=Ly, 6" d°9q gatlure (3)
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must be taken into account. A_; is the minimum
value of the curve connectinguxq...Ae.

In the example of fig.2 the minimum value A =
265.1 kN/m is showing that the slip surface 1
acc. to the active earth pressure is connected
with the extremum, leaving the whole friction
transferring %ength L outdside the friction
body, i.e. L; = L and the assumption of the
fictitious anchor wall at L'= L/2 would be com-
pletely wrong.

This investigation has to be done repeatedly
for different lengths 1 of the anchor to find
out the required minimum of the length,
however, always using the same values of L. The
required safety factor is F = min A/A 2 1.5.

Another result of these model tests was the
justification to neglect deviations from the
plain strain case.

About 60 model tests were done approving that
the limit state equation acc. to fig.2 is work-
ing. The result is valid for model tests as
well as for prototypes. For more details and
the analytical formulations see Heibaum (1987).
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Example 2 corresponding to case 2:

Large bored or driven piles are mostly in-
stalled vertically because of costs; then ho-
rizontal loads on pile groups must be trans-
ferred by the lateral soil support of the pi-
les. In comparison with eingle piles the in-
teraction between the group piles deteriorates
the load-deflection behaviour. This is of in-
terest up to deflections of 0.1.d (d = pile
diameter) which can be approximated by the pow-
er function:

ug Hy "
a MUl A
ref
(4)

uq H

log — = log A + n « log ( )
d ref

u,/d, H/H are the normalized movement

resp. load"aft the pile head.

Experimental evidence shows that the 2 cases
of fig.3 (which are extreme limitations) must
be distinguished: rigid piles and o long flex-
ible piles. (In the latter case of elastic
piles in non-linear behaving soil it is defined
that the deflections do not reach the pile tip,
the deflection curves for increasing loads then
are self-similar to each other,s. Dietrich,
1982. Only in these 2 cases constant exponents
nh resp. n, do exist.) By fig.4 to 11 the expe-
imental results are shown and the model test
rules are derived.

Fig.4 to 7 approve that the test results are
straight lines in log-log-scale acc. to
equ.(4).

H —o Uy fe— £.1.1
3 I,

L f

YR -d
n

for kn = const

E-I1,1/5
L0 = (n—)

h

a) b) fork =n

na
k, =coefficient of

a) rigid pile 1 éZ-LD horizontal sub-

> grade reaction Fig.3
b) o long pil b
os
dae2s8-J / /
. o )
» ¥ 14/ /
e VT
z / / 2 4 L6 -~
033 ~
- . V4 /S P
3 I Vs A 2
@ '» 7 = =
Z / / - o .8
a8 » « ’,-;,5:
as AW, ol
‘—i*::::: = =
e
o 20 W0 L0 " Ld 0L
MORIZONTAL LOAD 4
e ‘1
2 | de 258 — ATab
S ——————— == - ==
g —— e R e
Railes e
‘1 .
9 o = A .
= —.4
Q0 ~ ] B
e
W » E) W0 50 B N MW Fig. 4

HORIZONTAL 1oaD —Y8
we



Oon fig.4 the test results of a model family of
rigid piles are shown which had equal di-
mensionless magnitude 1/d, but different abso-
lute diameter (d = 1.8 to 25.8 cm). With in-
creasing d (and length 1) o_ (see equ.l) in-
creases causing the shown change in load de-
flection behaviour resp. the parallel devia-
tions in log-log-scale (see example 3, too).
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on fig.5 it is shown that the exponents are
constant, but different for rigid (n = tan 63°)
and « long piles (n, = tan 55°). (For elastic
piles with lengths shorter than in the defined
case of » length no straight lines in log-log-
scale do occur; n is decreasing with increasing
load between n and n,.) Furthermore it is seen
that changes in density D are causing only
parallel deviations in case of n resp. ng
beeing constant in log-log-scale. From these
(and other) test results it can be concluded
that n resp. n, are constant (in homogeneous
soil) for each soil type and independent of the
actual soll condition expressed by D (or I, for
cohesive soils).
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On Pig.6 it is shown that the different be-
haviour of piles with free movable and fixed
head is expressed by parallel deviations in
log-log-scale again.
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On fig.7 results of tests on a pile row with
equal normalized pile distances s/d acted on by
the group force H; are shown. It revealed that
the front pile behaves always like a single
pile whilst all rear piles take the same but
smaller load shares of than the front pile
at the same deflection (independent of the num-
ber of rear piles). The distance s/d is causing
parallel deviations in log-log-scale again.

On fig.8 the results of all tests (including
prototype tests of Schmidt 1986) with pile rows
like the ones of fig.7 are gathered and shown
by the load factor a; = f(s8/d) with

o, = Ho /My (5)

load of a single pile at the deflection u,
G load share of a rear group pile at the
deflection ug; = u,
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On fig.9 the results of tests on pile rows
across load direction with distances q/d are
shown. Now it must be distinguished between the
corner piles (index A) and the centre piles
(index Z). It was experienced that the centre
piles took smaller load shares of the group
force H, than the corner piles in comparison
with a single pile of the same deflection (u, =
u;) independent of the number of centre piles,
dependent on the pile distance g/d only. This
is expressed by the load factors

s = Hg,/Hg (6a)
oz = H;,/H, (6b)

From tests with groups consisting of pile
rows along and acroes the group force direction
results like on fig.1ll1 were obtained. From
these results it was learned that only four
pile types do exist, schematically shown on

fig.10:
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-Type 1 Hg, = ag,*Hy = o+ H,
- Type 2 Hg; = ooy Hy
- Type 3 Hgy, = agaeq Hy = a3°H,
- Type &  Hgrp = agpeeHy = a,-H,
For a individual group pile i the load factors

@ = a can be gained by simple superpo-
sition. Generally it is

= “2'“0

H = a « H (7)

The group action factor is consequently in case
of J piles

R = Za,+H,/j+*Hy = Ea,/3 (8)
and the load share of a group pile is
H;/H; = a,*Hy/Za, *H, = o,/La; (9)

for uy = u, independent of the magnitude of u,.

It was learned in addition that the a;-values
are independent of the boundary conditions at
the pile head and -at least approximately- of
the bending rigidity, i.e. no significant dif-
ference was obtained for a;-values of rigid and
o-long piles.

Sumning up all these results it was shown
that in log-log-scale

ug % 8

log(—) = log f,(—)+log £,(D,Ic) + log f,(—) +
d 9y d

H

i
)

9
log f,(-) + log f5 (6) +.... + nelog (
d ref

with op as a suitable chosen reference value
and § = degree of fixation of pile head. Now
conclusions can be drawn towarde a model test
rule: Equation (4) can be rewritten in the form

u 8 g H n

0 m 0
== = £(==)£,(D,Ig) e f4(~s --u) | ) (7a)
d oy d d ref
St N —t S
scale |soil con-| geometrical
effect!ditions conditions

Comparing test results of group and single
piles of the same type, in the same soil (with
regard to type and actual condition) and in the

pame ecale, then f, and f, are the same and
from equ.(7a) it follows
u, s H, n
G 3G i
- € (=5) (7b)
up £y Hy

i.e. £, and fz are cancelled, the scale effect

and the effect of the soil conditione vanishes,
results are valid for model tests as well as
for prototypes. It is seen that for H, = H, a
constant ratio reveals independent of the ex-
ponent n

u f

G k[

— = — =4 = const (7¢c)
vy £
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For u; = u, one obtains dependent on n

Hi :
—_ = Au'l’“ = Ay = const (74)
Hy

The values «a,, Coar %z and its combinations
are of the Ay-type.” The neglection of their de-
pendence on n resp.n, ie content of the men-
tioned approximation. Further tests of more ac-
curacy may show refinements with different a;-
values for rigid and infinitely long piles.

At least it is shown that the moduli of sub-
grade reaction k, (acc. to the Winkler medium
theory) must be decreased for group piles ap-
plying once more the a,-values: For ky = ny-z/d
and w-long piles (l>4-LG) the deflection = for
the eingle pile is (withn L, of fig.4 and Cy
e.g. acc. to Matlock/Reese, 1960)

= 3
uy = Cy « Ly o Hy/E:I

and for the group pile
= 3

u, = Cy-L°Gi *(@y+Hg)/E-1
Introducing now Ly, = (E<I/nyg,) /% and vy = ug

npgy = &/? emy (8a)
For rigid piles (1 < 2 « Ly)

fipgy = @ * Ny (8b)
Interpolation for 4 » Ly < 1 < 2 « L,

For k, = const the corresponding values are for
w-long piles

13, x

Kngy = @ h (8c)

For rigid piles
Kngy = @Ky (8d)

For more details see Kliber (1988), Franke

(1988).

Example 3 corresponding to case 3:

Thias example was already shown in connection
with fig.4. The derivation of a load-deflec-
tion-law from these test results was shown by
Franke/Muth (1985).
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