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Power spectral density methods for site motions
Les méthodes puissantes de densité spectrale pour les mouvements des sites

J.-T.CHRISTIAN, Consulting Group, Stone and Webster Advanced Systems Development Services, Boston, Massachusstts, USA

SYNOPSIS: Site-dependent ground motions often are established by combining the response spectra of a suite of strong motion records
from earthquakes of the same magnitude recorded for similar ground conditions. Different results are obtained when different suites of
records are selected, but the statistics of the spectra can be combined by the technique described in this paper. Several techniques based
on the theory of random vibrations have been developed to describe the motion in the frequency domain by power spectral density
functions. Most require that a prescribed response spectrum be recaptured, which can be done best for spectra based on actual records
instead of arbitrarily smoothed shapes. Defining motion at high frequencies and interpreting and understanding the results require

further study.

1 INTRODUCTION

Recent developments in earthquake engineering have empha-
sized the use of design ground motions that represent the con-
ditions at the site of the facility in preference to generalized
motions that are intended to apply to a range of conditions.
Such site-dependent ground motions are usually represented by
response spectra, but suites of time histories of acceleration
also have been used, with arguments existing for each ap-
proach. The major disadvantage of the former is that engineers
have not agreed as to how the effects are to be transmitted
through multiple-degree-of-freedom systems, especially when
the damping varies within the structure, while the major disad-
vantage of the latter is that the phasing of the component fre-
quencies is fixed for each time history and, therefore, each
time history gives unique results in a dynamic analysis. Most
recently, the methods of random vibration theory, especially in
the form of the power spectral density function, have given
considerable promise of resolving these problems. This paper
presents statistical methods for combining different estimates
of site-dependent response spectra and reviews techniques for
developing corresponding power spectral density functions.

2 METHODS OF STATISTICAL COMBINATION

Several approaches can be taken to develop a suite of recorded
accelerograms from which the site-dependent response spec-
trum will be computed. Hunt et al. (1986) describe a site at
which about 35 m of sands and gravels overlie very competent
rock. Records could be selected from sites that match this ge-
ometry as closely as possible, or one could choose recordings
made on rock sites and perforrn amplification calculations to
obtain the motions at the surface of the site profile. While
either method gives a reasonable response spectrum, the mean
spectral acceleration is different in the two cases. Similarly,
different estimates of the site—-dependent spectrum can be ob-
tained by different models of the seismicity of the region, of

the soil profile, or of other parameters. How then should the
best estimate of the site-dependent spectrum be obtained?

A proposal by K. F. Reinschmidt (1985) for combining two
estimates can be extended to an arbitrary number of estimates
by the following procedure. It is assumed that the ordinates of
the response spectra making up any one suite at each fre-
quency are log-normally distributed; this can be verified easily
from the data themselves. If there are n; records in the ith
suite and the mean and standard deviation of the logarithms of
the ordinates at a given frequency are x; and s; , respectively,
then the estimate of the mean of the combination of the suites
is

¥ = z w; X; (1)

where w; is the weight to be used for the mean of the ith
suite and the summation is understood to be done over all the
suites. The variance of the estimate of the mean is the combi-
nation of the variances of the means for the suites:

s2 = Z wi -\'12/’1,' ()]

The weights can be found by minimizing s> with respect to
the individual weights under the constraint that the sum of the
weights must be unity. The easiest approach is to define the
constraint by a function:

¢=ZW,—1=0 (3)

With the introduction of the Lagrangian multiplier 4 , the
function to be made stationary becomes s> - 2i¢. This leads
to

Wy S[z/m - A =0 (4)
and, as the sum of the weights is unity,

A = 1/(2 ’l//-\';z) (%)
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and
wio= ( fsB) /(T m/sP) )

The variance of the combination of the suites is found by
recognizing that the variance of a normally distributed func-
tions is 3 distributed with the number of degrees of freedom
one less than the number of samples. If ¢* is the variance of
the population, the variance of n samples is

$=rad/@-1 Q)

The results of m independent samplings from the same
population, each x* distributed, is the sum of the individual

XZ=Z("i‘1)Slz/02 (8)
As the best estimator for o* is
g=07/(En - m ©)

it follows that

= Y-/ -1 (10

Figure 1 shows the S percent damped response spectrum de-
veloped by Hunt et al. (1986) from the two suites of records
combined by the above process. The mean and the mean plus
one standard deviation are plotted together with a previously
established design spectrum.

3 POWER SPECTRAL DENSITY FUNCTIONS

Random vibration theory has been used for many years in the
study of dynamic systems, including both structures and me-
chanical equipment, but it has not been widely employed in
the geotechnical aspects of earthquake engineering. Crandall
and Mark (1963) present both an excellent introduction to the
subject and descriptions of many of its basic results. Van-
marcke (1976) developed the ideas further to describe ground
motions due to earthquakes. These have been elaborated over
the last several years by a number of researchers so that there
is now a substantial body of experience dealing with random
vibration techniques for earthquake engineering.

The concept of the power spectral density function is central
to the theory of random vibrations. This can be derived from
the Fourier transform A(w) of a particular signal or time his-
tory a(t) . By use of Parseval’s theorem, the total power in the
signal can be expressed in terms of A(w) or a(f) :

j|a(:) Pd = [|A@ PP do = power (11)

The term under the second integral represents the distribu-
tion of the power over the range of frequencies and is equal to
the square of the magnitude of the Fourier transform. This is
called the power spectral density function. As the integrals of
Eq. 11 are symmetrical about the origin for a real function
a(t), the power spectral density function can be defined either
for positive values of frequency only or for both positive and
negative values. For the total energy to remain constant the
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Figure 1. Statistically determined site-dependent response
spectrum

ordinates in the former case must be twice those of the latter.
It is also possible to work with frequency in radians/second
(w) or cycles/second (f). Selecting between the single- or
double-sided versions of the function and between @ or f has
an effect on the magnitude of the ordinates, and the user of
power spectral density methods should be careful to establish
which conventions are being applied.

The power spectral density function directly describes the
distribution of energy over frequency, whereas the response
spectrum describes the response of a particular type of system
to the input. The ordinates of the response spectrum at high
frequencies necessarily reflect the input of energy at the lower
frequencies.

Determining a power spectral density function ¥ at some
point in a structure or system, if the power spectral density
function ¢ at another point is known, requires only that the
power spectral density function of the input be multiplied by
the square of the magnitude of the complex transfer function
between the two points:

v (@ = | Ho) ¢ (@ (12)

Because methods of dynamic soil-structure interaction analy-
sis formulated in terms of complex transfer functions have
evolved significantly over the past decade, the necessary trans-
fer functions often are readily available, and the calculation is
relatively simple. This greatly expedites the evaluation of seis-
mic response in different regions of a structure or soil deposit.

For many applications it is still necessary to have a response
spectrum. To compute the response spectrum from a power
spectral density, it is first necessary to evaluate the statistics of
the response of a single-degree-of-freedom system. Although
the techniques for doing this rigorously can become very com-
plicated, several researchers, including Kaul (1978), Sun-
dararajan (1980), and Unruh and Kana (1981), have described
simplifications that make the calculations more tractable.
These methods require first that the amplification function for
the system (with natural frequency £ and damping 8 ) be



convolved with the power spectral density function to obtain
the variance of the response:

Q'+ 48 W Q@
- a.>2)2 + 48 o

c@* = | : & T ¢ @ do (13)

The square root of the variance is then multiplied by a peak
factor, F, that is based on studies of the statistics of response
to white noise. As shown in Eq. 14, this peak factor F is a
function of frequency and depends on the ratio, r, of the value
and the time derivative of the standard deviation of the re-
sponse, the duration of the motion, D, and the probability, p,
of exceeding the response spectrum when the power spectral
density function is known. Christian (1988) describes some of
the details of the procedure.

D 1 1/2
F(Q = [2 In {—; m}] (14)

Although Kaul (1978) describes a rigorous and accurate
method for determining the power spectral density function of
an underlying statistical process from a given response spec-
trum, an iterative procedure, such as the one developed by Un-
ruh and Kana (1981), usually is employed. The iterations start
with an estimate of the desired power spectral density func-
tion. That function is then used to compute a response spec-
trum, and the square of the ratio between the computed re-
sponse spectrum and the given one is used to correct the
power spectral density function at each frequency.

Figure 2 shows the comparison between the 84th percentile
response spectrum of Figure 1 and the response spectrum cal-
culated from the fifth iteration of the power spectral density
function computation. The calculations were done by a micro-
computer program called SPEED, which is based on the previ-
ously cited work by Kaul (1978), Sundararajan (1980), and Un-
ruh and Kana (1981). The ordinates are spectral acceleration.
The two curves match very closely despite the small number of
iterations. It was observed that very similar power spectral
density functions were obtained when the convolution ex-
pressed by Eq. 13 was done for the acceleration response and
for the displacement response, and when the numerical inte-
grations were carried out by different schemes.

Figure 3 shows the same comparison between the standard
U.S. Nuclear Regulatory Commission design response spectrum
for 5 percent damping and the spectrum calculated from the
iterated power spectral density function. The match is excellent
for frequencies below about 20 Hz, but there is significant di-
vergence at higher frequencies. This phenomenon is observed
often when applying random vibration methods to standard,
simplified response spectra. A similar effect is found when
generating artificial accelerograms to match such spectra. This
is not surprising, for artificial accelerograms are usually gener-
ated by a process that involves finding the power spectral den-
sity of the underlying process and then randomizing the phase
of the individual components.

As noted by Vanmarcke (1976), the integral in Eq. 13 in-
volves two terms, one of which is the amplification function
for a single-degree-of-freedom system. This is equal to unity
at low frequencies, has a sharp peak at the natural frequency,
and goes rapidly toward zero above that frequency. Therefore,
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Figure 3. Comparison of the standard response spectrum with
iteration results

the integral can be approximated by three portions. In the
first, the amplification function is unity, and the integral is
simply the integral of the power spectral density. The second
is essentially the integral of the peak of the amplification func-
tion multiplied by the value of the power spectral density func-
tion at that frequency. The third vanishes because the amplifi-
cation function goes to zero. One implication of this analysis is
that the response at high frequencies can be dominated by the
power at the lower frequencies; the low-frequency power
causes response even at higher frequencies where there is no
power at all. Physically this means that a relatively rigid body
subjected to low-frequency oscillations will experience the ac-
celerations of the input even though there is no energy input at
the fundamental frequency of the responding body. It also im-
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plies that the shapes of response spectra cannot be specified
arbitrarily and still be consistent with the constraints of dy-
namic response.

It should be noted that minor differences in power spectral
density functions also can have significant effects at very low
frequencies. In the extreme, a non-zero value of the power
spectral density function at zero frequency implies a steady
source of energy and leads to infinite computed response.
Clough and Penzien (1975) pointed this out and proposed cor-
rections to the well-known Tajimi-Kanai power spectral density
function to eliminate the low-frequency power. Even when the
power spectral density function does vanish at zero frequency,
minor variations in the power content at low frequencies can
have significant effects on the computed response at low
frequencies.

4 DISCUSSION AND CONCLUSIONS

There are many arguments in favor of the use of site-
dependent descriptions of design motion instead of general
spectra that apply to a broad range of conditions. Because the
site can be described by a number of parameters and the
choice of recorded motions will be affected by different inter-
pretations of the site conditions and the governing seismic re-
gime, several different site-dependent motions may be ob-
tained. Rather than trying to reconcile the differences into a
unique consensus, it may be better to combine the results of
different approaches statistically, as described in Section 2.

The methods of random vibration theory and, in particular,
the power spectral density function provide a powerful tool for
describing ground motions in a way that is consistent with sta-
tistically derived ground motion spectra and with modern meth-
ods of dynamic analysis. Techniques have been described for
computing probabilistically based response spectra from the
power spectral density function of the underlying process. The
inverse calculation can be done by iteration.

It should be noted that the power spectral density functions
and the response spectra are treated as continuous functions.
Their values at particular frequencies are just that: local val-
ues of a function. In contrast, artificial accelerograms are com-
posed of many discrete components at different frequencies,
and the energy in one component represents the contributions
of a cluster of frequencies near the discrete value. The distinc-
tion is the same as that between a continuous and a discrete
Fourier transform. Using discrete descriptions of the motion,
such as artificial accelerograms, can lead to very jagged re-
sponse spectra and considerable sensitivity to the selection of
frequencies at which calculations are done. On the other hand,
a continuous representation tends to give much smoother
results and eliminates the extreme conservatism induced by
efforts to force all results to lie above a smoothed curve.

Power spectral density functions are more easily generated to
match response spectra generated by statistical processes from
real records than artificially smoothed idealized response spec-
tra. Mismatches appear especially at the high-frequency end of
the spectra. However, difficulties also can arise at the low-
frequency end because of the strong effects of power at very
low frequencies.

One potential advantage of random vibration methods is that
they permit a more rational treatment of questions involving
the probability of exceeding a given level of motion. They also

1934

free the analyst from dependence on the quirks of a particular
accelerogram. A major disadvantage is the lack of practical
experience in their use, which reduces the intuitive confidence
required for successful application of any technique.

There is a need for further examination of the use of ran-
dom vibration techniques. To date there is relatively little
practical experience with these methods, so engineers have lit-
tle intuitive grasp of what can and cannot be done and of
where the pitfalls lie. In particular, it would be worthwhile for
studies to be made of the power spectral density functions for
a variety of different site conditions and seismic regimes.
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