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Seismic response of three-dimensional alluvial valleys
La réponse sismique des vallées alluvionnaires en trois dimensions
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F.J.SANCHEZ-SESMA, Centro de Investigacion Sismica, A.C., México, D.F., Mexico, and Instituto de Ingenieria, UNAM, CU,
México, D.F., Mexico

S.CHAVEZ-PEREZ, Centro de Investigacion Sismica, A.C., México, D.F,, Mexico

SYNOPSIS: A boundary method is applied to study the seismic response of three-dimensional alluvial
valleys on the surface of an elastic half-space. The excitation is given by incidence of plane waves
The method makes use of wave function families which are solutions of the Navier equation. The re-
fracted and scattered displacement fields are constructed with wave function linear forms. Coeffi-
cients are obtained from a least-squares point matching of boundary conditions. Axial symmetry of
the valleys allows the use of an azimuthal decomposition, and the solution of the problem is feasi-
ble through superposition of several two-dimensional solutions. Results are presented for incidence
of SH and Rayleigh waves in time domain. Large amplifications and spatial variation of ground motion
are found in both cases, clearly indicating the significance of the phenomenon in earthquake analy-
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1 INTRODUCTION

It is a widely known fact that local site con-
ditions can generate large amplifications and
relevant spatial variations of seismic ground
motion. Lateral heterogeneities on the ground
surface, as well as in stratified soils, have
been related to damage distribution produced by
several earthquakes (Sanchez-Sesma, 1087>. For
instance, the recent September 19, 1085, M -
choacan, México earthquake has been the most
damaging event to date in Mexico City (Beck and
Hall, 1986). Source and path effects (Singh et
al., 1888), and resonance in the uppermost sed-
iments of the valley greatly amplified the mo-
tion. Most of these effects can be generally
explained through one-dimensional models of the
seismic response of surficial strata on soft
soil. However, the influence of two- and three-
dimensional local site effects is still not
well known, but certainly important in the soil
mechanics, and engineering seismology contexts.

The seismic response of two-dimensional alluvi-
al valleys has been studied by several investi-
gators Ce.g., Bard and Bouchon, 1880a, b, 1685;
SAnchez-Sesma et al., 1988; Bravo et al., 1988
considering several types of incident waves and
valley configurations. This has allowed to un-
derstand essential aspects of the problem. How-
ever, papers describing three-dimensional mod-
els are very few in number, mainly because of
the inherent difficulties found in their treat-
ment. Lee (19840 used wave function expansions,
and Lee and Langston (1983) utilized ray theory
to study axisymmetric valleys. For the same ge-
ometry, a recently developed boundary method
utilizes wave function expansions and an azi-
muthal decomposition to reduce by one the di-
mensionality of this problem (SAnchez-Sesma,
1983; Sanchez-Sesma et al., 1984; Chivez-Pérez
and SaAnchez-Sesma, 1984). The general formula-

tion showing its numerical advantages has been
presented by Sinchez-Sesma (19830, but numeri-
cal results have only been reported for normal -
ly incident P and SV waves in the frequency do-
main.

The aim of this paper is to consider non-normal
incidence of SH waves, as well as Rayleigh sur-
face waves, in the seismic response analysis of
three-dimensional alluvial valleys. The formu-
lation of the method is summarized and the nu-
merical solution briefly described. Results are
given in time domain for the sake of showing
the importance of this phenomenon, and its val-
ue for seismic risk evaluation in strong earth-
quake ground motion.

2 FOUNDATIONS OF THE METHOD

Let us consider a three-dimensional alluvial
valley on the surface of an elastic half-space
as shown in Figure 1. The half-space and the
valley are denoted by E and R, respectively.
Let ME and &R be the free boundaries of the
regions, and 82E = #2R the common boundary be-
tween them. For harmonic time dependence, the
displacement vector u must satisfy the reduced
Navier equation

szu + CA+OIV-u + pmzu = 0, 1d
where A and u4 = Lamé constants. p = mass densi-
ty, w = circular frequency, and V = gradient
operator.

Under incidence of elastic waves., the total
displacement field in the exterior region E is
obtained by superposition of scattered waves on
the free-field solution (i.e., the solution in
absence of surficial imperfections). In region
R, the soclution is given by refracted waves.
Boundary conditions are those of zero tractions
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e f ilon of regions E and R, and

at ME and R, and continuity of displacements
and tractions across #E = &R. In addition,
the scattered fields must satisfy the elastic
radiation condition at infinity, which means
that no energy may be radiated from infinity
into the prescribed singularities of the field.
Then, let us write the total field in region E
by means of

E (O) (®)
u = dV+ JY, >

where u'®'= f{' ee-field solution displacement
vector, and u = scattered field displacement
vector given by

u®= g g S Ajnm '?mn. 3

1]0 mn=0 m=0

For region R, we have

Yy

)0 n=0 m

n
2 Bijnm "‘j‘nm. c4d
=0

For the latter two equations, anm are dis-
pl acement vectors of the scattered fields, and
irm are displacement vectors of the refracted
fields, respectively. Ainm and Bynm are unknown
coefficients, and N and M are the orders of the
expansions. The range of values for jJ (= O, 1,
2) stands for the types of waves i{nvolved;
namely, toroidal SH waves. and spheroidal P and
SV waves, respectively. The solutions depend on
twe other indexes; n and m, the radial and azi-
muthal numbers, respectively. The diffracted
and refracted solutions can, in general, be
written in the form

FnCrd FRce,¢d, 4:))

where fn(r), the radial function, is given in
terms of spherical Hankel or Bessel functions
for the regions E or R, respectively (Sanchez-
Sesma, 1983). Fn(8.¢) is a vector function
given in its different forms in terms of the
surface spherical function (e.g., Takeuchi and
Saite, 16721

YRC8,43 = Paccosed o'™® e
and i{ts derivatives. Here, PR(-) = associated
Legendre function, and m = O, #1, #*2,..., #n.

It should be pointed out that each one of the
displacements vectors Winm, does not satisfy in
itself the free-boundary conditions on the
hal f -space surface. Because of this, the numer-
ical treatment is extended to part of the free-
surface, but this is not a serious restriction.
For the range of frequencies covered in this
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work, it suffices to take twice or three times
the half-width of the valley to obtain good re-
sults.

The numerical solution is carried out by impos-
ing boundary conditions at a finite number of
points on the boundaries. This yields te a sys-
tem of linear equations for the unknown coeffi-
cients (the {ndependent part is given in terms
of tha free-fiaeld solution), which is solved in
the least-squares sense. Once the coefficients
are known, equations 2, 3, and 4 allow us to
calculate the displacement fields at any point
of the regions E and R, and their boundaries

This colleocation method or point matching ap-
procach has been useful to perform two-dimen-
sional computations (SaAnchez-Sesma et al.,1982,
1885).

3 THE AZIMUTHAL DECOMPOSI TION

If the shape of the irregularity is independent
of the spherical coordinate ¢, its axisymmatry
with respect to the z-axis, and the orthogonal -
ity of all the azimuthal functions, grant a
complete decomposition of the problem in terms
of the azimuthal number. It can be shown that
any component of the free-field can be expanded
in a Fourier series of azimuthal functions
(Sanchez-Sesma, 16883). In spherical coordinates
C(Figure 2), these components acquire oddness
and eveness properties with respect to the azi-
muthal angle which are also applicable to the
scattered and refracted fields. For instance,
it can be seen, from equations 3 to 6, that the
scattered and refracted fields contain sinus
and cosinus of m¢, where ¢ = azimuthal angle.
Tharaefore, if the scattaerer is a>dymmetric,
boundary conditions also have these prop-
erties, and it suffices to solve a "“two-dimen-
sional” problem for each azimuthal number 1in
the r, 6 spherical coordinates. The final solu-
tien is attained by superposing each partial
result.

Figure. 2. Cartesian and spherical coordinate
systems. Unit vectors in the spherical system.

For normally incident plane waves, only one az-
muthal number is needed. In this case, for P
waves, only m = O is required; for SV and SH
waves, it suffices to take m = 1. For almost
grazing incidences, or Rayleigh waves with
large heorizontal wavenumbers, this approach re-



quires many azimuthal numbers. However, even i{n
this critical case, four or five azimuthal
terms give a good approximation if the horizon-
tal wavelengths of the incident field are of
the order of the maximum horizontal dimension
of the irregularity.

4 NUMERICAL EXAMPLES

Results in frequency domain are given in terms
of the normalized frequency

7 Wie= g <7D
nﬁE
where ﬁE = Ju7/p = shear wave velocity of the
half-space, and a = radius of the valley. For

time domain results, the Fast Fourier Transform
algorithm is used to compute the convolution of
the transfer function, given by the total solu-
tion for several normalized frequencies, and
the frequency spectrum of the assumed source
wavelet. We utilize a Ricker wavelet defined by

fCt> = CA-BY expC-AD, 8

where A = n°Ct-tad>/tp, B = n ta’tp, tastp =
0.1983, and tp = "characteristic period"”.

The order of the expansions, and the number and
location of collocation points are obtained us-
ing a "trial and error" procedure based upon
the error analysis of boundary conditions and
the stability of the calculated surface dis-
placement fields. The order of the expansions
we utilized for the szca_t‘.t.ered fields is roughly
given by N = 4Ci+n’) "+13n, whereaszf_?r the
refracted fields is given by M = 4C1+n ) +15n.

The maximum azimuthal number used Is of about
C2+7nd-2, but never less than 2. The number of
collocation points is of about 307, but never
less than 8. They were placed uniformly at R,
2R, and at ME in a length of 2a. In all the
computations, the residual tractions and dis-
placements did not exceed the six per cent of
maximum free-field stresses and displacements,
respectively. Typically, when these residual
errors are lower than this value, the calcula-
tions for several analyses do not show signifi-
cant changes.

Figure 3 displays results of the three-dimen-
sional response of a semispherical alluvial
valley under oblique incidence of SH waves of
unit amplitude. The gecmetry of the valley is
the simplest one we can investigate with our
method. This selection has been made to support
the fact that shear wave responses are valuable
for seismic risk evaluation and show the feasi-
bility of their three-dimensional computations.
Synthetic seismograms, given by the total solu-
tion up to a value n = 2, are shown at nine
surface receivers for the horizontal displace-
ment component uy. Important spatial variations
in ground motion are observed, and large ampli-
cations are found, mainly in the central region
of the valley, of up to SO0 per cent.
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Figure. 3. Response of a semispherical alluvial
valley with radius a = 700 m to an obliquely
incident SH Ricker wavelet of 'characteristic"

period tp = 1.0 sec. Poisson coefficients are
vp = 0.3 and ve = 0.25. Material properties are
“R/“E = 0.2, pR = pE, ﬁE = 2.1 kms/s, and ﬂR/ﬁE
= 0. 45. Traces represant displacements C(uy

componant) at nine surface receivers marked
with dots {in the upper part.

On the other hand. it is also a well known fact
that strong ground motion contains significant
contributions from surface wavas. Then, let us
consider impinging Rayleigh waves of unit am-
plitude upon another kind of alluvial valley
(Figure 4>. Synthetic seismograms, given by the
total solution up to a value n = 3, are shown
in Figures S and 6 for two different sections.
In Figure S, uy = O because of the symmetry of
the problem. Large amplifications are observed,
mainly in the vertical displacement component
uz, and surface waves seem to be present. By
studying the particle motion, we find that 1t
1s retrograde at the beginning of the synthet-
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ics. This suggests the presence of emergent
Rayleigh waves. Figure 6 alse displays impor-
tant spatial variations in vertical ground mo-
tion. Also note the emergence of the non-inci-
dent displacement component uy due to converted
waves.

ad

1500 m

bl

Figure. 4. Alluvial valley with izn(.e;face shape
given by the equation z = h(1-3F"+2f >, 0 £ F <

1, where ¥ = (X +y D “®*,a, and h = maximum
depth of the deposit. a = 8000 m. hra = 0.5.
Poisson coefficients are W1~ 0.3 and ve =

0.25. Material propertias are “k/“!:; = 0.3, PL =
Pp: ﬁE = 1.5 kms/s, and (?R/{?E = 0.71. ad Plan

view showing the location of surface receivers
in sections X'X and OY. R stands for incidence
of Rayleigh waves. b) Cross section.
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Figure. 5. Synthetic seismograms for the dis-
placement components Cad wux and (b)) uz in sec-
tion X'X under incident Rayleigh waves upon the
alluvial valley of Figure 4. Ricker wavelet of
“"characteristic’ pariod tp = 12 sec.
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Figure. 6. Synthetic seismograms for the dis-

placement components Cad wx, (b)) wy, and Cc) wuz
in section OY under incident Rayleigh waves
upon the alluvial valley of Figure 4. Ricker
wavelet of "“characteristic'" pariod tp = 12 sec.



5 CONCLUSIONS

(1) A boundary method has been applied to study
the seismic response of three-dimensional allu-
vial valleys in time domain. Axisymmetric scat-
terers are assumed to allow an azimuthal decom-
position of the problem, and reduce by ocne its
dimensiocnality. The seolution is obtained by su-
perposing a sequence of “two-dimensional" prob-
lems.

C(2) Results for the oblique incidence of SN
body waves and Rayleigh surface waves upon two
kinds of alluvial valleys show large amplifica-
tions associated with three-dimensional effects
which increase the complexity and spatial vari-
ation of ground motion.

(3) This work demonstrates the feasibility of
quantitative three-dimensional studies of local
site response. The method furnishes an alterna-
tive way to calibrate other procedures and can
also be extended to study the dynamic response
of foundations.
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