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General time volume change equation for soils
Equation générale de variation de temps volume pour sols

E. JUAREZ-BADILLO, Research professor, Graduate School of Engineering, National University of Mexico; Technical Adviser of

the General Director of Technical Services, Ministry of Communications and Transports, Mexico

SYNOPSIS

Traditionally the time volume change behaviour of soils under isotropic

and confined conditions has bLeen divided into instantaneous and delay deformations. This
time a general unifying equation for soils is presented. The time volume change behaviour of
soils is described by 2 parameters: the "coefficient of volume viscosity 8" and the

"characteristic time t*".

"Tavta pel”

INTRODUCTION

A general compressibility equation for soils
has already been presented by the author
(1981) using some general philosophic
principles. These philosophic ideas have also
been used to obtain a general permeability
change equation for soils (1983a). This time
the same philosophic ideas are used to obtain
the evolution of such volume changes with
time. It includes the instantaneous and delay
volume changes in dry coarse soils (sands and
gravels) and the delay or secondary
compression of fine saturated soils (silts
and clays). Primary compression or
consolidation due to the retardation caused
by the dissipation of pore pressure in
saturated fine soils has already been the
subject of previous papers (Juarez-Badillo,
1983b, 1985; Juarez-Badillo and Chen, 1983).

BASIC CONSIDERATIONS

Let us consider a sample of dry coarse soil
subject to an isotropic stress g, for a very
long time. Let now the stress o, be
increased "instantaneously" to o,. The
problem is to find the infinitesimal changes
in volume dV taking place in the
infinitesimal times dt. Let V; be the
initial volume for t = 0 and Vf be the final
volume for t = =, The relation between 4V
and dt should produce an equation satisfying
the following philosophic principle:

"The equation relating V and t may exist
only through a non dimensional parameter and
should, independently of critical points,
satisfy the extreme boundary conditions,
namely: Vv =V, for t = 0 and V = V. for

t = mll' 1 f

The connection between dV and dt can be
obtained through the following steps which
are thought to be philosophically supported:

1) The real domain for t is complete,
that is, from 0 to «, while the real

(Heraclitus)

domain for V is incomplete and
inverse, that is, from V; to Vg, We
need to find a function %(V) with
real domain complete and straight,
that is £(V) = 0 for t = 0 and
f(V) = » for t = @, Fig 1 illustrates
the obtention of f(V) that results
to be
- 1 1
£(v) = - (1)
\Y% Vf Vi Vf
2) Now f (V) and t are ready to be
connected. For philosophic reasons,
which includes the philosophic
principle enunciated above, the
relationship should be

af (V) _ . dt
B (2)

where § is a non dimensional parameter
of proportionality, called the non
linear "coefficient of volume
viscosity". -

GENERAL EQUATION

Let V; be the known volume for t = t,
(ty # 0). Integrating eq (2) between the
limits (t,, V,) and (t, V) we get

v t
1n f(V)]_ = § 1ln t J
Vl t1

e TV =(EtT) 3

Introducing eq (1) into eq (3) we obtain
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Multiplying numerator and denominator of the
first term by Vi = Vf, this eq (4) may be
written as

Vi . Vf ’ (Vi - Vf o 1) (_t_)d‘ 5)
V- Vf v, - Vf ta

In practice, a simpler and more convenient
way of writing eq (5) is using alternatively
the symbols

AV = x
(AV)T = X

v, -V
i

vV, -V
i

(6)

f T

where AV = x is the volume change at time t
and (AV)T = xT is the volume change at t = =,

Introducing egs (6) into eq (5) we obtain
X X 6
X T ~Tia s ( —Tx A 1) (gi) 2
T X 1 1
= % R X, / t\6
v T XL \E‘—/G
3 xT - > XT = X3 (t_l)
* 3 X X t

and therefore we

equation
§
X x =1
T _ X ==
(2 9(2)
———Vyr———— oyr————Oop————- @
f I
o o
ak: v =D v-v g—b 1 =, Soh p—
2 £ fl2 ™ Vv g Y VVE Vi
2 ; ; 2
Iy ORI Vi V) eSS P g el | T =,
0 Vi Vi-Vy Vive 0
—
Time Volume
Fig.l Scheme for the obtention of
1 1
£(V) = g— -
\Y Vf Vi Vf
If the degree of compressionU is defined as
U= fL , then eq (8) may be written as
T 6
t
s X 1
g =+ (5~ (F) ()

A further simpler form for eq (9) is defining
the "characteristic time t*" as the time for
which U; = 0.5. 1In this way eq (9) may be
written in the very simple form

(£

al-
1
[ 9
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In order to feel the progress of compression
with time Fig. 2 shows the graphs of eq (9)
for the special case that t, = tg o for

U, = 0.9. Different values of § are shown.
The Terzaghi's linear solution for onedimen-
sional consolidation is shown for comparison.
Fig. 3 shows the same curves for the case
that t, = t,,, for U, = 0.1 and Fig . 4 shows
also the same curves for t, = t,.s5 for

U, = 0.5. From Figs. 2, 3 and 4 it appears
obvious that they are not very convenient
plots to deal with in practice.

e e+ e TR ZAG N

(+]
5=
v |
0.02 8=2
85=1
0.04 l—
8=0.5
0.06 |—

*ig.3 Graphs of & = 1 + (QL‘— 1)(tl>

for U; = 0.1(t,



1/A/28
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Fig.Sb Graphs of L= 1 +(le - 1)(Sp2)
9. raphs ot g = (o - )(‘t‘")
10
0
&
1 1 ) P u | T u T
Fig.4 Graphs of il 1+ m—l)(T for g 0 0 0.50(1.0000
005 [0.0526 0.55(1.2222
U, = 0.5(t; = to.s) 't e 0.10 {01111 06015000
0.15[0.1765 0.65(1.8571
0.3(— 0.20 |0.2500 0.70]2.3333
0.25 |0.3333  0.75|3.0000
0.4 0.30 (0.4286 0.80|4.0000
0.35 {05385 0.85|5.6667
Fig. S _(a ar}d b) shgws the same curves than 05— 8:22 g:g?g'z’ 8:32 199-_8883
Fig. 2 but in a semi-log plot, that is, the 0.6 |- 1.00| @
time in log scale. oz /™
If the "time factor 1" is defined by o8|
£\% . 09—
T = (ET) (31) 10 Lol il Ll
] 0.01 01 1 10 100
then eq (10) may be written as T=GLJB
"
1 1 u
= = + — 12 i oy
i} 1 T (12a) Fig.6 Graph of =5 1

or in the form

In order to ascertain in practice the values
— =T (12b) of § and t*, some characteristics of the
semi-log plots follows.

Fig. 6 presents the graph of eq (12) as well

: 1) The semi-log plots are anti-symmetric,
t fuU.
as the values of 1 for different values o that is if U, = 1 - U,, then
2 _it* _
¥ From eq (12b) for U = U; we
0 have
: U
0.1 8:® 1
u Ty '™ ——— (13)
02 1 U,
hi
0 Atz For U, = 1 - U; we similarly have
0.4
)
05 1 ——+¥%=§5 g Uz o1 -0 (14)
0.6 K 1 -0 U, T
0.7 that is, from eq (11)
&8 U=09 for 12154 s 5
0.8 tZ (¥
10 (#) - (t—) (15)
oo e 322 therefore
to.9
t
. 0.3 2w L (16)
Fig.5a Graphs of ——E—) T T L,
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In the semi-log plots, therefore, symmetrical
values of U with respect to U = 0.5, have
symmetrical values of t with respect to t*.
See Figs. 5 and 6.

2) The middle third of the semi-log plots
resembles very close a stright line.

The slope of the curve in Fig. 6 may
be found using egs (12)

au du _ u? _ u?
dlog'r = 2,371 E = 2.31 1_'_2 = 2.3 -T_
. av - _ _
* + 3dTogt - 2.30(1-0) (17)

The maximum slope occurs at U = 0.5 (t=t*)
and its value is

(a{%%?)max ) zji (18)

Similarly, the slopes of the curves in Fig 5
are as follows. From eq (11) we have

dr _ 5 dt (19)

and therefore, we may write from egs (19) and
(17)

du _ du _ du _ U?
dToge = 23t & = 238157 = 2.3 6

. av_ _ _

. e m_ 2.36U(l U) (20)

The maximum slope occurs at U = 0.5 (t=t¥*)
and its value is

au _ 2.3
(dlogt)max == ¢ (21)

The ratio of the slope at any point to the
maximum slope is therefore given by

du

dlogt = 4U(1-U) (22)
(avo5e)

dlogt max

The values of this ratio for U = 0, 0.1,
0.2, 0.3, 0.4, 0.5 are: ratio = 0, 0.36,
0.64, 0.84, 0.96, 1.0 respectively. For
U= 1/3, ratio = B/9 = 0.89.

Finally, the ratio of the slope of the
stright line passing by the extreme points
of the migdle third of the graph (secant
slope = U _jto the maximum slope is, using

eq (12b)AlogT
AU 2/3-1/3 _ 1/3 _ 1 (23)
Alogt t2/3 2 6log2
log 173 1og¥-

The ratio is, therefore, from egs (23) and
(18)

Alogt _ 2 _
" 3x2.31log2 0.96 (24)
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The above shows that, in practice, the
middle third of the time curve may be
considered, without serious error, as a
stright line. See Figs. 5 and 6.

The stright line (middle third) of the time
curve extends over certain number of cicles
in the log scale of time. The number of
cicles may be found as follows. For Fig. 6
and from eq (12b) we have that for U = 1/3,
T = 0.5 and for U = 2/3, 1 = 2, therefore,
the number of cicles given by AlogTt is

Alogt = log %%é% = log 4 = 0.6 (25)

Similarly, for Fig. 5 and from eq (l1l) we
may write

Alogt = log 173 - 5 log 73 s =5 (26)

For example, for § =0, 0.1, 0.3, 0.6, 1.0,
the stright lines extends over =, 6, 2, 1,
0.6, 0 cicles, respectively. See Fig. 5.

All the above characteristics of the time
curves are very useful to determine, in
practice, the parameters § and t* from the
experimental data.

Oonce the values of § and t* are known the

time for a give degree of compression may
be found. From eqgs (11) and (12b)

(£)° - % (@7)

For example, for U = 0.9

1/8
to.o .
T 9 (28a)

Observe that for (1-U) the time is just
reciprocal. For the above example, for
U=20.1

Ys
- (%)

Fig 5 shows the values of eq (28a) for the
different values of §.

The rate at which the degree of compression
progresses may be found as follows. From egs
(12a) and (12b)

2
g% = g? = (1-u)? (29)

From eq (11)

ar = o(&)° &t (30)

Introducing eq (30) into eqg (29)

du _ § ¢t
® - 0z (&) (31)

For t = 0 (U = 0) we get



If 6 <1 [g—g] =
t=0
au 1
If § =1 [—] = = (32)
dt),_, " F

From expressions (32) we see that only for
the case § < 1 we may expect to have "instan
taneous" or "simultaneous" deformation with
the "instantaneous" increase in stress.
However the amount of this instantaneous
deformation depends on the value of § and on
the time we take to register it. See Figs. 2,
3 and 4. For 6 = 1 the rate of deformation is
finite and therefore any deformation needs
some time to take place. For § > 1 the rate
of deformation is zero.

The above theory, developed for soils under
isotropic stresses is thought to be also
true for triaxial conditions if the principal
directions of stress and of strain do not
change and if the ratio of the principal
stresses are kept constant, as for example,
in confined onedimensional compression.

The determination, in practice, of the
parameters § and t* depends on the type of
the experimental data. Using the semi-log
plots we will refer to the three thirds by
(c), (s), (c), that is, curve, stright line,
curve. Data with points in the three thirds:
(csc). Data with only in two thirds: {(cs)
and (sc). Data with only in one third: (c¢,),
(s) and (c,). The best experimental data is
(csc). The worse experimental data is (s) if
it is a "short" stright line.

For obtaining § and t* from an experimental
curve, the author has found convenient to
proceed as follows. The procedure is general
but, for simplicity, imagine we have an (cs)
type data.

Let t;, x; be an initial point (See eq (8)).
Let t,, x; be an intermediate point. Let t.,
Xz be a final point. The last two points
located in the initial and final zones of the
stright line. Observe that the values of the
x may be any quantities proportional to the
volume changes.

1) Guess a value for x,, making use of
the characteristics of the semi-log
plot. Find the value of x = a for
the point where the stright line
starts. Then, Xy = 3a.

2) Compute § using points 1 and 2 (they
are usually better points than point
3). Points 1 and 2 satisfy eq (10)

(e

Ul = E (33)
[
1 -U; _ ft*
— = (&) (4

U,
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Dividing eq (33) by eq (34)

1-u, U, t, 6
- —1—Uz=(ﬁ) (35)

Solving eq (35) for 6§ and writing the U,s
in terms of the x,s we get

X, Xp = X,
log %7 Xr - X2
§ = ———on (36)
t2
lOg 2
3) Check the value of x_, using the

initial point 3. This§ point should
satisfy eq (8)

Zoue(Zo0(2)
3 1 3

o+

4) Repeat steps 1 to 3 in case eqg (37) is
not satisfied, changing the value of
x7 in the correct direction (a grater
xp results in grater calculated x,).

5) Compute t* using preferable point 2.
From eq (10)

§ -
(H) I (38)
t, X,
6) Introduce xp, § and t* in eq (10). The

time equation is ready for use

)

Equation (39) written in terms of volumes
and in terms of heights (for onedimensional
consolidation) are as follows

(AV)T
VeV - s v s — T (40a)
1+( )

(AH)T
H=H; - AH=H- ————(Erjg (40b)

1+ =
For the case of (sc) type data use the
antysimmetrical points.For (csc) type data
use the extreme points of the stright line
for points 1 and 2 and check two points 3
located at the extremes of the intire
experimental curve.

For the case of (s) type data, the
parameters may be determined if it is a
"complete stright line". Intervals for xgp,
§ and t* may be found otherwise.

For this case let x, and x; the values of x
for the initial and final points of the
stright line. The stright line is complete
if x, = 2x,;. If x, < 2x, it is incomplete.
In this last case xp shoud satisfy the
unequality
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1.5x, £ X < 3x, (41)

T

Assuming for xp the extreme values given by
eq (41), the corresponding values for ¢ and
t* may be found using eqs (36) and (38).

If the value of § is known, xp may be found
solving eq (35) for xp.It results

x (t_Z)
2 to\ X,
(_A) -—_
\gy / X

The value of xp found should satisfy
unequality (41?

PRACTICAL APPLICATION

The above theory is now applied to some
experimental data.

One of the earliest "Time curve for a typical
load increment on sand" is Fig 10.4 in
Taylor's book (1948) (Not included here).
Comparison with Fig. 2, indicates approximate
values of § = 0.1 and t* = 1 sec.

Fig. 7 presents the experimental (Vesic and
Clough, 1968) and theoretical curves for
"medium, uniform, slightly micaceous sand,
composed of sub-angular quartz grains"
between 0.1 to 1.0 mm sizes, Chattahoochee
River sand, during isotropic compression.
"The volumetric strains are plotted as
percentages of total volumetric strains
under the particualr load increments (degrees
of consolidation) versus time". The
deformation in question "predominantly
breakdown of particles" situates these
curves on the second phase (virgin) of the
compression curves (Juarez-Badillo, 1981).
An inspection of the curves obliged the
author to make an allowance of 10 sec for
primary consolidation for the first 3
increments of load, and to make an allowance
of 3% for further compression for the last
increment of load. With these "corrections"”
eq (10) was applied using § = 1 and the
characteristic times t* indicated for each
laod increment. It is to be observed that t*
increases with the level of stress.

Fig. 8 (a and b) present the experimental
(Zepeda and Diaz, 1982) and theoretical time
curves for Mexico City pumice sand, between
0.84 to 4.76 mm sizes, under the particular load
increments indicated. The loads were sustained
from 2 to 17 hrs. Tests were made on a very dense
state of the sand and on a very loose state. The
experimental data includes the types: (csc), (cs)
(sc) and (s) . The values of x. =(AH)p, § and t*
were ascertained as indicated above, using
eqs (36), (37) and (38) and eq (40b) was
used to plot the theoretical curves. The
check was almost intirely within 0.01 mm
with few zones (at the beginning of the
curves) where the check was within 0.02 mm.
It was necessary, however, to make 2 small
"corrections" to Hij, as indicated in Figs. 9
and 10.
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ho o=0125kg/km?, 3=0.10 (5)7
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o= 3kg/em?,5:019,(S)”
1 |

46'%,1 1 10 100 1000

See indications in fig 8b t,min

Fig.8a Time Volume change of Mexico City
pumice sand

Table 1 presents the time parameters of all
these time curves. Figs. 9 and 10 present
the compression curves for both, very dense
and very loose states Note that for stresses
below 1 or 2 kg/cm? the experimental data
was of the (s) type, and they were "short"
stright lines with x2 < 2 x,. However, by
interpolation in Figs. 9 and 10 it was
possible to choose the "correct" values for
x7, § and t*. Fig. 11 shows the variation of
§ with the level of stress. Zepeda reported
he believed there was breakdown of particles
at all increments of load. The author
believes there was not breakdown of particles
for stresses below 2 kg/cm?, due to the
constant small value of § = 0.1. The feeling
of the author, at present, is that, for
granular soils, § is small and constant

(6§ £ 0.1), before the breaking of particles
and that 8 is large and constant (0.5<§ <1)
when the level of stress is already in the
virgin. curve where a generalized breakdown
of particles exists. In these experiments it



appears that the "critical zone" where there
is partial breaking of particles extends from
2 to 8 kg/cm?. Fig 11 also shows that for the
very dense state the values of ¢ were
somewhat smaller than for the very loose
state. Observe also from Table 1 that t*
appears to be constant (~ 0.5 min) before

the breakdown of particles.

465 —
H,mm o :6kg/cm? B:0,38,(CS)
460}

'.
assf- = o'=8kq/crn'.8=04,4'(csl
o =5kg/em?, 5:033,(CSC) !
4501~ © Foa g=6kg/em?, 5=033,(CS)
'.
=7 2 B=0.4

o=4kg/cm® 8=0.28,(CSC)
"

R451- ¢
-

o =B8kg/cm®, B=046,(CS)
440}-

[} 1 1

a5
1 1 10 100 1000
t,min

# y First and last readings

Theoretical curves

Characteristic times t*indicated Hi=Previous lost reading
Data type indicated { ) Follow dense and loose states
separately

Experimental points (After Zepeda and Diaz)

e Very dense state {Hg=48.5 mm)

x  Very loose state (Hg=49.0mm)

Fig.8b Time Volume change of Mexico City
pumice sand

Ty, kg/cm2

K 1
48 < 0.3 48.5
E E
£ E
> T
48
—| 9825
47
—|as.0
46
4
5 2 4 3 s 10
oy, kg/ecm?

Experimental points:

(After Zepeda and Diaz)

o Initial points Hi

+ Flrst lectures Hy ot t=10 sec

x Last lectures Hz at t=2 to 17 hrs
Theoretical points:

O Calculated final points Hf (t=q0)

Compression of Mexico City pumice
sand. Very dense state

Fig.9
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Table 1. Time parameters for Mexico City

pumice sand tests

Time of

State| 9 loading B x H. t*
in\ o mh | mh | wh '

kg/cm? min

0.125| 120148.50(0.03(48.47(0.10]1
0.25 120148.48]0.08(48.40|0.10/0
160(48.43(0.22(48.21(0.10{0.
0
0

w

850148.29(0.40(|47.89(0.12
120(48.00(0.75|47.25(|0.12
120147.51/0.70(46.81|0.17|(9
270147.08|0.65(46.43|0.22|18
1000{46.66|0.55|46.11(0.28|47
240146.20)|0.45(45.75|0.38(310
940145.99(0.45145.54(0.43|33
1000145.6210.50(45.12|0.44|300

Very
dense

W~ WNFEO

5| 340(49.00(0.28(48.72(0.10(0.2
790(48.81|0.35(48.46/0.10(0.4
380(48.57|0.55(48.02(0.11{1.2
180)48.21|0.80(47.41]0.11|0.6
925|47.69(|1.05(46.64(0.13[0.1
170]46.89|0.90(45.99/0.1916

215]46.30|0.80(45.50(0.28{7.5
100045.7410.75|44.99|0.33|15
1010(45.14|0.70144.44)0.41|110
340{44.61]0.70(43.9110.46(110

Very
loose

OOV WNRHEOOO

1000|44.1710.85(43.32(0.46]|140

ov, kg/cm2

49.0

H, mm

47

—|48.0

456

45

Experimental points:

(After Zepeda and Dioz)

o Initial points Hi

aq |+ Flrst lectures H, at +=10 sec

x Last lectures Hp at 1=2 10 17 hrs.

Theoretical points:

o Calculated final points Hf (1= 00)
bl | | !

o 2 B [3 8 10

Ty, kg/cm?

43

Fig.1lQ Compression of Mexico City pumice sand.
Very loose state

A similar experimental work (Porras and Diaz,
1984) was made on Guadalajara pumice sand
(Jal) in a medium dense dry and saturated
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states. The load increments were sustained
one day but the "short" stright lines were
more abundant making somewhat difficult their
analysis. However the author found that the
values of § for the saturated sand were, in
the average, 1.5 times the corresponding
values of § for the dry sand.

ov, kg/cm?2
0 1
0.5 -
X X
" O
0.4l— X Very loose state (/
8 O Very dense state
03
(o}
X .
0.2 ¥ 0.1
owg& § 8
0 I | 0
0 2 4 6 8 0

Oy, kg/cm?2

Fig.1ll Variation of &§ for Mexico City pumice
sand

Fig. 12 presents the time curve for a long
time cedometer test made on a typical sample
of Mexico City clay. The sample was 15 mm
height. A vertical pressure of 0.96 kg/cm?
was sustained 250 days. The previous load
was 0.74 kg/cm? sustained 8 days. The
increment load ratio was therefore 0.30. Eg
(40b) was applied with H;y = 12.12 mm,

(MH)p = 0.84 mm, 6§ = 0.73 and t* = 7.2 days.
After 90 days the experimental points pres-
ented some inconsistencies and bacterial
growth was very noticeable. A second test
was made in identical conditions and its
behaviour was practically identical but with
higher inconsistencies after 90 days. It
should be observed that, for this test,
primary consolidation was almost
unnoticeable. Probably it was very small and
took place in less than 0.1 day making the
"secondary compression" data very consistent.

-Hiz12.12 mm

Verfical pressure oy 0.96 kg/cm?
susfained 250 days

12.0 Previous oy=0.74 kg/cm? sustained
B8 days A
gy _ 0.22 _
Therefore T 074 =0.30
L (AHIT 20.84 mm
Typlcal sample of o 7.2 days u
Mexico City clay After 90 days

there were some
—-inconsistencies in

1he experimentai
points.

.

1.6 |- from 16m depth
Confined compression
Original height of sample =15 mm

n.4 .
—- H§ =11.28 mm Hy ——
N2 Ll W NI B B R
0.1 1 10 100 100¢

t, days
e Points representing the
experimental curve
— Theoretical curve
8=0.73, t*=7.2 days

Fig 12. Time volume change of Mexico City clay
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A "coefficient of secondary compression"
that may prove to be useful in practice due
to its similarity with the ones already in
use (Mesri, 1973) is the following. From eq
(21)

oo f_dAH 1) _ 2.3, (8)g A
a \dlogt H e 4 H*
where H* is the value of H for t = t¥*
In terms of volumes, eq (43) would read
il g Py (44)
o . o AR

For the test on Mexico City clay of Fig. 12
we have, therefore

% 243 0.84 _
€y = = 0.73 {r=g = 0.030 (45)

Note, however, that this parameter is not
enough to completely specify secondary
behaviour.

Several time curves were made available to
the author by his colleague Leonardo Zeevart
(1983) using 20 mm thick samnles of typical
Mexico City clay, with load increment ratios
from 0.30 to 0.75 in the recompression branch
and from 0.15 to 0.40 in the normally
consolidation branch. The loads were
sustained from 4 to 24 hours. An inspection
of these curves clearly showed that in the
recompression branch primary consolidation
took place for U £ 0.3. In the normally
consolidation branch the author could not
determine the termination of primary
consolidation.

Mesri (1973) has published a very extensive
experimental data on onedimensional tests
using Organic (liquid limit wy = -70) and
Inorganic (wy, = 54) Paulding clays.
Thixotropic hardening has not been considered
in the above theory. Therefore, remoulded
samples are not considered. Only sedimented
samples behaviour on the normally
consolidated branch will be considered

(Ko is not constant in the recompression and
swelling branches). The data is mainly
presented in terms of Cy and eyp defined by

Ca Ae 1
€op T T¥e_ ~ ATlogt 1+e (46)
p p
where e = void ratio at the beginning of the

linear Bortion of the e-logt curve.

For our analysis let us substitute expression
(46) for the equivalent expression

(47)

£

where Hp is the value of H for e = ep.

Comparison of eqs (43) and (47) leads to



- - Bp
€2 = “ap H¥ (48)

The tests were made on 25.4 mm thick samples,
using load increment ratios ég = 1. The
loads were from 0.25 to 32 kg/cm? . The
level of stress was reached "with only
sufficient time allowed for excess pore
pressure dissipation”. Let us assume, in
order to continue with the analysis, that
this ocurred for U = 1/3.

Fig. 13 presents a scheme illustrating
primary and final compression curves in
clays using the above assumption. The data
was suggested by Organic Paulding clay.
Approximate values of its coefficient of
compressibility y and of its void ratio ey
for ¢ = 8 kg/cm? may be found using the
expressions (Juarez-Badillo, 1975)

Y = O'OOIG(WL - 10) = 0.10 (49)
and
eg = 7.5y = 0.75 (50)

The primary compression curve would,
therefore, be (o in kg/cm )

-—0.10

% (%)

or in terms of void ratios

1+ e =( %) (52)
The void ratio for o = 4 kg/cm is, from eq
(52), e = 0.875, that is (de), = 0.125, and,
therefore, (fe)p, = 0.375, and for the total
compression curve, we get,for o = 8 kg/cm?,
eg = 0.5. The equation for this curve is,
therefore,

54 —0-10

e _ (0o
e ) (53

The value of 5% entering in eq (48), is

given by (See Flg 13)

(AH)p
H, - (AH) 1 - —g=
- 2 3 L= T (54)
H* Hy - 3(8H)p 1 - 5 =B
i

where, for our case

(AH)p _ g, 'Y_ -y
—2 _1-(5) =1-2 (55)

1
i

Introducing eqgs (54) and (55) into eq (48)
we obtain

(56)

1/A/28

010
For t=1p: e= 1.75(%)

P Fort=om:e -150(”) SLEm,
(oy in kg/em?)

® 2 (Ae)y
|(Ae)p Belp 3(assumed)

(Ae)p

0.8 |- _}Aﬂp
——
(Ae)y
0.6 |-
Doto suggested by Organic
Paulding Clay (Mesri, 1973)
0.4 ' | L !
) 2 4 6 8 10

oy, kg/cm?
Fig.13 Scheme illustrating primary and final
compression curves in clays

AH) p
The value of __FT_ entering in eq (43) is
given by

(AH) p 3 (8H) 3
= = 3 = o3 (57)
H, - 2(AH) i _ 3
1 < D (AH)p 2

Mesri has reported that for Organic Paulding
clay, e€qp = 0.013, and that for Inorganic
Paulding clay, €gp = 0.0035 (Fig. 5 in Mesri
paper) .

Applying egs (49), (55), (56), (57) and (43)
to Organic Paulding clay we get

Yy = 0.10

* =
er 0.0135 (58)
§ = 0.10

Similarly, applying the same equations to
Inorganic Paulding clay we get

Yy = 0.07
e; = 0.0036 (59)
& = 0.04

Observe that there is no practical difference
between €* and ¢ Observe also that these
Darameterg can no%pbe used in practice
without the t* parameter.

Mesri et al (1975) have published a very
extensive experimental data on secondary
comoression of typical samples of Mexico
City clay. The samples were 19 mm hlgh The
applied pressures were up to 30 kg/cm?. "The
samples were loaded in increments to a final
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pressure using a load increment ratio of
unity and a load increment duration just
sufficient for completion of primary
consolidation determined by Taylor's method
(Taylor, 1948)". For undisturbed samples,
first sustained loading, they report a
constant value eqp = 0.033 (their Fig. 25)
for the virgin branch of the compressibility
curve. From the compressibility curve (their
Fig. 16) the author obtained a
compressibility coefficient y = 0.43. Making
the assumption that primary consolidation
ocurred for U < 1/3, application of egs (55),
(56), (57) and (43) give

=
n
o
-9
w

™
*
It
(=]
.
(=
-y
(=]

(60)

The value of y coincides with the value
reported by the author (1975). Observe now
that €¢* 1is 20% higher than €ap: Compare
also “this value of eX with “the one given
by eq (45) for Fig. 12. Compare also the
small value of § = 0.06 with the high value
§ = 0.73 obtained in Fig. 12. This great
difference, might be due to the fact that
Fig. 12 is still in the recompression branch
of the compressibility curve. Future research
should clarify this point.

FINAL DISCUSSION

It has been shown that the time volume
change behaviour of soils (when no retarda-
tion exists due to pore water pressure
dissipation) under isotropic and confined
compression (if Ko = constant) may be
described by a single eguation containing
two parameters, the coefficient of volume
viscosity 6§ and the characteristic time t¥*.
The coefficient § has to do mainly with

the form of the time curve while the time t*
has to do mainly with the rapidity of the
phenomenon. See Fig. 2.

This general time equation is identical in
form to the general compressibility
equation (Juarez-Badillo, 1981). Compare
Fig. 3 of the present paper with Fig. 2 of
the above mentioned paper. The coefficient
§ in the volume time curve has the same
significance than the coefficient vy in the
volume pressure curve. Similarly, the
characteristic time t* has the same
significance in the time curves than the
characteristic pressure o* has in the
pressure curves.

The compressibility equation reads
= =14+ (—) (61)
while the time equation reads (eq (10))

b ($)
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If U' is defined by
Ut =1-10 (63)

then eq (62) may be written as
8
1 _ t
& =1+ (&) (64)

and the similarity of eqgs (61) and (64) is
evident.This is so because they satisfy the same

-philosophic requirements. Because of this

similarity the time curves of Figs. 5 and 6
may also be interpreted, using eq (63), as
the compressibility curves of granular
materials before the braking of particles,
that is, in the unvirgin curves.

It 1is the feeling of the author that for
granular soils like sands:

1. In the first mechanical phase of the
compressibility curve, unvirgin, § is small
and constant, say § = 0.1 and t* is small
and constant, say t* = 1 to 30 sec (Taylor's
figure, Fig. 11 and Table 1).

2, In the transition or critical zone,
where partial breakdown of particles exists,
§ and t* 1increase when the stress increases
(Figs. 8 and 11 and Table 1).

3. In the second mechanical phase, virgin
curve, where a general breakdown of
particles exists, § is high and constant,
say § = 0.5 to 1.0 and t* increases when
the compressive stress increases (Figs. 7,
8 and 11 and Table 1).

Similarly, it is the feeling of the author
that for plastic soils like clays:

4. 1In the recompression branch § is
constant, apparently with high values (Fig.
12). Is t* also constant?

5. In the normally consolidated branch
§ is constant, apparently with low values
(egs (58), (59) and (60)). Is t* also
constant?

The above comments are mainly made to
promote future experimental research. The
published data does not allow the
determination of t* in clays. The author
believes that a reconsideration of some of
the experimental data of the past is highly
desirable.

It should be noted that, in clays, primary
consolidation will make necessary to
introduce a modification in the time scale
after the termination of the excess pore
pressure dissipation, Fig. 7. Future
researchwill indicate how this should be done.

It is important to realize that primary
compression curves are functions of the
loading programs while the final (t = )
compression curves are postulated to be
unique for given soil samples under monotonic
loading, Figs. 9, 10 and 13.



It should be noted that, according to this
theory, the parameter €%, eq (43), very
similar to the traditional ey, eqs (46), (47)
and (48), is not a good Qar?meter to study .
secondary compression. SH)T is constant as
far as the load increment ratio is
constant and no previous sustained loads have
acted (egs (57) and (55)).

It is suggested that eqg (10) is also
applicable to solids, liquids and gases. It
should be very interesting to know the
parameters § and t* for water. Very surely
they both are very small.

CONCLUSIONS

The main conclussion are as follows:

1. A general time volume change equation
for soils is presented,eq (10). It consist
of two parameters: the coefficient of volume
viscosity § and the characteristic time t*.
The parameter § has to do mainly with the
form of the time curve while the parameter
t* has to do mainly with the rapidity of the
phenomenon, Fig. 2.

2. We may expect to have "instantaneous" or
"simultaneous" deformation with the
"instantaneous" increase of stress only when
§ < 1, However its amount depends on the
value of § and on the time we take to
register it, Figs. 2 to 4.

3. The semi-log plot seems most appropriate
for the time curves, Figs. 5 and 6. In this
plots, the time curves are antisymmetric

and its middle third is very close to a
stright line.

4. For sands, it appears that, for the
unvirgin branch of the compressibility
curves, the values of § and t* are small

and constant, while for the virgin branch
of the compressibility curves, the values of
§ are high and constant and the values of t*
increases when the compressive stress
increases.

5. PFor clays, it appears that the values of
§ are constants, but different, in the
recompression and in the normally
consolidation branches of the compressibility
curve.

6. In clays there is a high need of
experimental data to study the t* parameter.

7. There is a need of experimental data to
study the factors that influence the values
of the & and t* parameters in soils.

8. It is suggested that eq (10) is also
applicable tosolids, liquids and gases.
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