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Analysis of foundation behaviour using finite layer methods
Analyse de la conduite des fondations par les méthodes des couches finies

J. R. BOOKER, Reader in Civil Engineering, University of Sydney, N.S.W., Australia
J. C. SMALL, Lecturer in Civil Engineering, University of Sydney, N.S.\W., Australia

SYNOPSIS Traditional methods of numerical analysis, such as finite element and finite dif-
ference techniques,require large amounts of computer storage, and for problems involving three di-
mensions, storage as well as computation time and data preparation time become excessive. For many
problems in soll mechanics, where the soill 1is horizontally layered, finite layer methods may be
used. Examples of the application of the method to a number of different two and three dimensional
problems are given to illustrate 1its simplicity and efficiency.

INTRODUCTION FINITE LAYER METHODS

The behaviour of layered elastic materials has The finite 1layer method depends on three
been of great interest to engilneers in the simple observations. These will be introduced
past; this 1interest being mainly due to the by considering the elastic deformation of the
fact that many earthworks, such as fills or horizontally layered deposit shown 1in Fig. 1
pavements, consist of harizontal layers of ma- under conditions of plane strain.

terlials of different types. Quite often natu-

ral deposits are horizontally 1layered also, The first observation 1is that 1if the deposit
and it 1s of 1interest to be able to predict is subjected to a periodic load having a peri-
the behaviour of structures built on such de- od L then the response will also be periddic.*
posits. This is illustrated im Fig. 1.

Because of the interest 1in pavement design

where wheel loads are roughly applied over a

circular area, many analytic solutions have

been produced for layered materials subjecter Pl /

to a circular load. Burmister (1945) and Fo. 4 ™ Ve \ f !
(1948) have presented results for two layered b1 45 15 B B I\ /< 1 T
systems where the underlying layer was infini- N / N
tely deep. Solutions have also been obtained

for three layered systems by Jones (1962) and e, Rest ;
Ueshita and Meyerhof (1968), where again the o =L \lsnire sar ——s
underlying layer was infinitely deep. - - ~

Gerrard (1967) has presented solutions for a
strip loading on a layered material. He ana-
lysed a two layered system where the layers Fig. 1 Spatially Periodic Loading.
were of finite thickness. He also investiga-

ted the effects of anisotropy. The second observation 1is that 1if the applied

load happens to be sinusoidal as shown in Fig.
Numerical methods of solution have in recent 2, then the response will alse he sinusoidal
years proved very attractive as they may be having the same period as the applied 1load.

used to analyse praoblems where each layer has In particular, if the surface loads have the
a different thickness or different material form

properties. Layers may also be anisotropic. g = R sin ax (la)
Straightforward application of the finite ele- Xz

ment method (see Zienkiewicz 1976) may be

used, but this is an inefficient method of so- 2z P cos ax (1b)
lution.

=}
[]

then the deflections throughout the layered
Methods wusing Fourier or Hankel transforms system will have the form
(Rowe and Booker 198la) or Fourier series
(Cheung and Fan 1979, Tham and Cheung 1981)

are a much more efficient way to solve such * The assumption of periodic loading places mno
problems and require only a fraction of the restriction on the method since an isolated
computer storage of conventional finite ele- load may be simulated by taking the period L
ment methods. to be large.
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u = U(z) sin ax (2a)

e
]

W(z) cos ax (2h)

Thus for the sample form of loading given by
equation (1) it 1is only necessary to determine
the variation of the displacement amplitudes
U, W with depth since the form of variatiom in
any horizontal plane 1s known. It follows
that for this case the two dimensional problem
has been reduced to a one dimensional problem.

Spatially periodic

loading
y
13 i {13,
S ‘\7,‘—" e
Spatially periodic
response Horizontally

layered
deposit

Rigid Bedrock

Response of a Layered Elastic Soil
to Sinusocidal Loading.

The third observation 1is that any prescribed
loading can be broken into a number of Fourier
companents, so that

%%z = r(x) = 7§ R =in a x (3a)
n=0
@
9, = p(x) = J Pn cos a x (3b)
n=0
where
Zen L
R = fo r(x) sin a x dx
ZEn L
Po= 5 fo p(x) cos a x dx
a = 2nn/L
e, = 1/2 (a = 0)
e =1 (n #0)

The decomposition of a uniform strip loading
is shown in Fig. 3.

The basic idea of the finite layer method 1is
to use the principle of superposition and to
break the applied load into the sum of Fourler
components, to find the solution for each Fou-
rier component (as remarked earlier this redu-
ces to a one dimensional problem) and then to
obtain the complete solution by superimposing
the component solutions.

The solution for each Fourier component 1is
found by a procedure which 1is analogous to the
well known finite element method. Congider a

typical loading of the form (1) (a = a

R = Rn’ P = Pn), then the response will have
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Fig. 23 Approximation of Uniform Strip
Loading by Fourier Series.

the form given by equation (2). Now consider
the typical layer bounded by node planes
z =z, 2z-* zp and shown 1in Fig. (4). This

will be acted upon by tractions

o = R sin ax (z = z)
b. %4 m m
g = P cos ax (z = z )
zz m m
and (4)

3} = R sin ax (z = 2z_)
Xz P

O,z = Pp cos ox (z = zp)

and will undergo node plane deflections

u, - Um sin ax (z = zm)
uz = wm cos ax (z = zm)
(5)
u,oo= Up sin ax (z = z )
u = W cos ax z = z
z P ( P)

It is possible to determine the relationship
between the node plane deflection amplitudes
and the node plane tractions, either analyti-
cally (Booker and Small, 1984) or approximate-
ly, using an energy principle Cheung (1976).
This relationship has the form

k K K v

RO kyy kip kyg kg P
L ko kazp kg kay v 6

"Ry kgp kzp kag kay Vo

a5 kyp kyz ky3 kg Wo

where the 4x4 coefficient matrix k 1is called
the layer stiffness matrix for the harmonic a.

The layer stiffness matrices (6) can be assem-
bled using the conditions of equilibrium of
stress and compatibility of displacements to
lead to the total stiffness equations for the
harmonic under consideration. This equation
has the form

KA = F (7



node planes

Fig. 4 Typical Layer.

where

the total stiffness matrix
for the harmonic a.

T
A = (V,, W;, ... )
~ is the vector of unknown
displacement amplitudes
T
F = (R;, P, 0, 0, ..)
~ is the vector of applied

traction ampitudes.

The assembly procedure for a

tem is shown in Fig. 5.

three layer sys-

Stiffness matrix is

symmetric, has band
width of 6 and 2N
degrees of freedom

(b) Total Stiffness Matrix

Fig. 5 Total Layer Stiffness Matrix.

Equations (7) can be solved for the wunknown
displacement amplitudes for each harmonic
a = an and the displacements at any position

may then be
lutions (2).

found by adding the component so-

Application of the Finite Layer Method

The finite layer theory developed in the pre-
vious section was strictly applicable to the
plane strain of an 1sotrapic elastic material
under conditions of plane strain. The method
can however be extended to solve three dimen-
slonal problems for layered soils consisting
of a number of horizontal anisotropic elastic
layersa. To illustrate this consider the pro-
blem of a strip, circular or rectangular load-
ing applied to the surface of a layered soil,
as shown in the inset to Fig. 6(b). The soil
consiste of an upper layer A and a lower layer
B, which are anisotropic and have different
properties to each other. (See Booker & Small
(1982) for properties). Results for stresses
in the vertical (czz) and horizontal direct-

ions (0r or axx) along the centreline beneath

each 1loaded area are shown 1in Figs 6a,b.
Stresses and displacements may, of course, be
calculated anywhere within the layer.

r
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Stresses Computed Beneath Loadings
Two Layers.

Often it 18 necessary to analyse soils which
exhibit strong non-homogeneity, such as a Gib-
son soll having a modulus which varies linear-
ly with depth and has the form E = E0 + pz.

One way of performing this analysis is to use
a “stair case” approximation of the type shown
in Fig. 7. It is difficult to obtain a good
approximation using this approach; this 1is 1l-
lustrated in Fig. 8, where a atair case ap-
proximation has been used to evaluate the be-
haviour of a strip footing acting on a layer
of Gibson soil; Brown and Gibson (1979).

Fig. 7 Layer Approximation to Varying Modu-
lus.
T T T L T
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Fig. 8 Effect of Numerical Approximations
upon Central Displacement of Circu-

lar Footing.

An alternative approach develaped by Rowe and
Booker (1982) approximates the wvariation of
modulus in each finite layer by using an expo-
nential variation as shown in Fig. 9. Refer-
ring to Fig. 8 it can be seen that it 1s pos-
sible to obtain an accurate solution with far
fewer layers.
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Typlcal Non-Homogenous Soil Profile
with Exponential Approximation.

Fig. 9

This approach has been used to examine the be-
haviour of anchors in a Gibson soil (Rowe and
Booker, 1981b) and the behaviour of surface
loading on a soill having a crust (Rowe and
Booker, 1981la).

The Finite Layer Method can also be used to
analyse time dependent problems and a formula-
tion which can analyse the consolidation of a
layered soil has been developed by Booker and
Small (1982) and to analyse soil creep (Small
and PBooker 1982b) as well as primary and
secondary consolidation (Small and Booker
1982a).

To illustrate this approach the problem of a
circular loading applied to a non-homogeneous
soll as shown schematically in inset (1) to
Fig. 10 was considered. Here two sublayers of
soil A and B make up the overall layer. For
this problem the lower layer B 1is four tilmes
as stiff but four times less permeable than
the upper layer A. The solution for the set-—
tlement-time behaviour of the central point of
the loading 1s shown in Fig. 10.

Time-Settlement Behaviour of Two-
Layer Socil System.

Fig. 10

CONCLUSION

The finite layer method may be used for the
analysis of a wide range of problems in soill
mechanics, where the soil is horizontally lay-
ered. Becausee the method needs very little
computer storage, two and three dimensional
problems may be analysed using microcomputers,
and savings may be made 1in data preparation
and computational time.
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