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Undrained bearing capacity of strain-softening clay
Capacité portante non-drainée d’argile ramollie
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SYNOPSIS

This paper shows how simple finite element models, in conjunction with elasto-

plastic theory, can give excellent collapse load predictions for footings resting on either an

elastic-perfectly plastic or strain-softening clay.

The model employed is based on the Tresca

yield criterion which can be considered sufficiently appropriate for a total stress analysis. A
new approach called "displacement control method" has been proposed to solve the elasto-plastic

problem.

INTRODUCTION

Most soils display a decrease in strength with
increasing strain from peak values to the
ultimate or residual value. This occurs under
both drained and undrained conditions and
constitutes an important departure from most
inelastic idealizations. It is now generally
acknowledged that progressive failure arising
from strain-softening has a significant effect
on many problems such as slope stability, earth
pressures, bearing capacity, even on the
strength measured in a test like the shear vane
test.

It was emphasized by Peck (1967) that a complete
understanding of the progressive failure would
require a finite element solution for the strain-
softening soil. HOGeg (1972) pioneered the
application of incremental elasto-plastic finite
element models to simulate the strain-softening
behaviour of a clay foundation. The theoretical
justification for using the classical theories
of platicity to simulate strain-softening
behaviour was later provided by the work of
Prevost and H8eg (1975) who proved the existence
of uniqueness and stability.

Attempts to incorporate strain-softening
behaviour have been connected with the use of
rather sophisticated models which render them
unsatisfactory for the design office. This
paper presents a simple plane strain finite
element model simulating the strain-softening
behaviour of clays using the theory of
plasticity and an associated flow rule for the
post-peak behaviour down to and including the
residual state.

NUMERICAL SOLUTION PROCEDURE

Strip footing on elastic-perfectly plastic soil

The implementation and application of the "dis-
placement control method" to the problem of
bearing capacity is better described in two
parts used sequentially as follows:

In the first part, the program developed
calculates a linear elastic solution for the
problem under the given loading. It then
proceeds to calculate the load factor, A, on
the given loading which will just cause yield
in one element. The internal stresses and dis-
placements corresponding to this load factor
are then calculated.

The vertical displacement under the centre of
the footing (the controlled displacement) is
conveniently taken to be the norm of the dis-
placement vector. The specified value, C, of
the controlled displacement increment in each
loading step is based on that of the elastic
solution. It is calculated as the above-
mentioned norm of the elastic solution divided
by a factor,m, which must be given as data.
Finally, the starting approximate values of the
displacement vector increment, {DSP}, and the
load factor increment, AX, to be used in the
next loading step are calculated as:

{Dsp} {sP}/m (1)

AL = A/m (2)

where {SP} is the displacement vector correspon-
ding to the load factor which will just cause
yield in one element.

The second part of the program calculates the
correct increase of load factor and the correct
displacement vector increment for one loading
step. Furthermore, the norm of the displacement
vector increment (the controlled displacement)
is maintained equal to the previously specified
constant value, C, throughout the iterations.
It starts by assuming that the displacement
vector increment is equal to the converged dis-
placement vector increment of the previous
loading step. This is progressively improved
to take into account the non-linear behaviour
of the problem and a new laod factor increment
is calculated with each improvement so as to
limit the controlled displacement to the
specified value. The procedure is repeated up
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to convergence when the load factor increment
remains very nearly constant.

Basis for iterations within one loading step

I1f, for a given increment in load factor AA,

the correct (converged) displacement vector
increment {DSP} is calculated then the relation-
ship given below will apply exactly:

[Ke]'1 (ax {P}+{dr}) = {DsP} (3)

where [Ke] is the overall elastic stiffness

matrix, {P} is the load vector and {dR} is the
load vector due to "initial stresses". If for
a given AX an approximate value of {DSP} is
known then the following recursive formula may
be used to obtain improved values of {DSP}:

-1
{DSP}(i+1)=[Ke] (ar {P}+{dR} ,,) (4)

where suffix "i" denotes the iteration number.
This recursive formula is derived intuitively
from equation (3) and no proof regarding
convergence is given. 1In fact it can be proved
that it will diverge when AA brings the total
loading above the collapse load. This
difficulty has been commonly encountered by
researchers in the field where they found it
impossible to calculate the load displacement
part of the curve around the collapse load.

In the strip footing problem for example the
last point in the curve of applied pressure
versus settlement, and before divergence is
indicated, is usually used to represent a good
approximation of the lower bound of the
collapse load.

The underestimation of the true collapse load
and the poor representation of the load-dis-
placement curve in the vicinity of collapse
arise because AXA is usually assumed fixed.

It may be overcome by varying AA, (which is the
same as varying the load increment) in such a
way as to keep constant a norm of {DSP}. 1In
this work the increment of the settlement at the
centre of the footing, denoted by {DSP}C, is

maintained constant throughout. 1In applying the
displacement control with elastic-perfectly

plastic soils the above recursive formula (3) is
adjusted so as to keep {DSP}c constant and equal

to C at each stage. This is achieved by assum-
ing that (DSP} is proportional to AA and hence
a factor h is calculated so that

C

h {DSPFC
which insures that
new AA = h A\ (5)
new {DSP}i+1 = h {DSP}i+1 (6)

This assumes a linear relationship between AXA

and {DSP}. This assumption is not absolutely
correct because some elements transit from
elastic to plastic mode but the process being
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iterative, the small errors involved are
automatically corrected in the next iteration.
On convergence, the internal stresses, dis-
placement vector and load factor are updated.
The loading steps can be repeated as many times
as necessary.

There are always out of balance forces which
remain at the end of each loading step. If the
program does not account for such forces they
continue to accumulate and built up a certain
amount of non-equilibrating load. The effect
of the out of balance forces was minimized by
calculating them at the end of each loading
step and applying them together with the
increment of loading vector in the next loading
step. The treatment of the out of balance
forces with displacement control needs, in the
case of a flexible footing, the introduction

of a second displacement vector increment
(Kalteziotis, 1981).

Strip footing on strain-softening soil

The idealized stress-strain relationship assumed
in this work is shown in fig. 1 and it is
composed of three regions (OKMN). The first

Assumed ela S.t:a‘r:«erfectly
plastic behaviour during a

loading step

£

Fig.1

Representation of the Stress-Strain
Curve and Procedure for the Treatment
of the Strain-Softening Case

ascending portion, OK, represents initial
elastic behaviour of the soil (clay), in which
the load rises linearly with a slope of E up to
the peak strength. The second region, KM, is a
descending straight line in which the strength
is reduced from peak to residual linearly with
increased plastic deformation. The third

region, MN, is a constant strength, Cor? region

where the stress remains constant with further
plastic deformation. It is assumed further

that the yield condition is described by the
Tresca criterion. In order to characterize the
brittleness of a soil, both the total reduction
in strength and the rate of reduction in strength
between the peak and the residual state must be
considered. The extent of strain-softening is
described by the brittleness index, I, given by:

A (7)
B Cur
where Cur and Cur are the peak and residual

shear strength respectively. The rate of



strain-softening is described by the ratio H'/E,
H' being the slope of the axial stress-axial

plastic strain curve in an uniaxial test (H'<0),
and E is the Young's modulus of the soil (clay).

For the treatment of the strain-softening case
and at the start of a loading step, the strength
of each element, which is known from the
previous deformation history, is assumed to
remain constant throughout that step. Under
these conditions the load-deformations charact-
eristics of an element which has previously
undergone plastic deformation is as shown with
the dashed lines of Fig. 1. Line AB represents
elastic unloading of the element whereas line

AD represents constant strength elasto-perfectly
plastic loading. This way the problem was
reduced to the elastic-perfectly plastic problem
described before. Further details can be found
elsewhere (Kalteziotis, 1981).

PRESENTATION AND DISCUSSION OF RESULTS

In order to illustrate some applications of the
proposed model, a plane strain problem is

solved herein using the finite element method
and the Tresca criterion. It consists of a
3.10m wide strip footing resting on the surface
of a weightless linearly elastic-perfectly
plastic or strain-softening soil (clay). The
soil was assumed to have a Young's modulus of
206,850 kPa and to be isotropic and homogeneous.
The finite element mesh used to analyse the
strip footing problem consisted of constant
strain triangular elements. Boundary conditions
in the finite element mesh were identical to
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The load-settlement curves for a flexible
surface, strip footing resting on a nearly
incompressible clay (v = 0.48) which exhibits

a strain-softening behaviour are illustrated in
Fig. 2. The curves of this figure have been
obtained for a brittleness index of 40% and each
corresponds to a different rate of softening.
The strain-softening clay is assumed to possess
an undrained peak shear of 120.66 kPa and a
residual shear strength of 72.40 kPa. The load-
settlement curves for the elastic-perfectly
plastic clay having constant shear strengths of
120.66 kPa and 72.40 kPa respectively are also
shown in Fig. 2. After a common initial elastic
portion, the load-settlement curves for the
strain-softening clay rise to a peak value (peak
ultimate load) which is less than the collapse
load for the elastic-perfectly plastic clay
having a constant shear strength equal to the
peak shear strength of the strain-softening
clay. After rising to a peak, the load-
settlement curves exhibit a descending portion
and finally approach the ultimate residual load
at larger settlements. The peak ultimate load
clearly depends on the rate of strain-softening,
H'/E, when the other parameters are held
constant.

The value of the residual ultimate bearing
capacity of a footing on a strain-softening clay,
is on the other hand, practically independent of
H'/E as it is illustrated in Fig. 2. The load-
settlement curves, after passing the peak load,
approach the ultimate failure load of a footing
on an elastic-perfectly plastic clay with a
strength equal to the residual shear strength

of the softening clay. This way the footing is
liable to catastrophic failure if the actual
loading reaches or exceeds the peak ultimate

/—Elastic-perfectly plastic clay
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Effect of Strain-Softening on Load-Settlement Curve
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load. However, the actual settlement at which
the residual ultimate load is obtained does in
fact vary with H'/E. Referring to the same Fig.
2, curve No.1 is incomplete but it does however
indicate that the correct residual load would
have been obtained at larger settlement that the
one at which the curve was truncated.

Similar conclusions can be drawn from theresults
of the analyses shown in Fig. 3 dealing with a
rigid surface strip footing bearing on a nearly
incompressible strain-softening clay (v = 0.48)
which is assumed to possess the same undrained
peak strength of 120.66 kPa but a higher
brittleness index (IB= 68.6%).

CONCLUSIONS

The "displacement control method" was found to
be capable of giving the complete picture of the
load-displacement behaviour and a rather accurate
determination of the collapse load of a strip
footing bearing on either an elastic-perfectly
plastic or strain-softening clay.

In general, the load-settlement curve of a
footing on a strain-softening clay first rises
to a peak and subsequently drops to a residual
value. The residual ultimate load is nearly
equal to the ultimate collapse load for an
elastic-perfectly plastic clay with shear
strength equal to the residual shear strength
of the strain-softening clay. For the purpose
of design, failure is normally assumed to occur
at the peak ultimate load. This peak load is
definitely less than the collapse load for an
elastic-perfectly plastic clay with shear
strength equal to the peak shear strength of the
softening clay. 1Its value, and thus the effect
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Effect of Strain-Softening on Load-Settlement Curve

of strain-softening, is a function of the rate
of strain-softening and decreases as the absolute
value of H'/E increases (i.e. as H'/E decreases
towards - =),

The peak and residual ultimate loads for a
strain-softening clay are reached at settlements
which seem to depend on the rate of strain-
softening.
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