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Probabilistic analysis of stability of earth slopes
Analyse probabiliste de la stabilité des talus en terre

E. O. F. CALLE, Research Engineer, Delft Soil Mechanics Laboratory, Delft, Netherlands

SYNOPSIS

A probabilistic method for the analysis of stability of slopes is presented. Determination of the

probability of failure anywhere along the slope axis involves two steps. The first step concerns determination of the
probability of occurrence of a potentially unstable zone, i.e. an area where the conventional factor of safety is less

than unity.

It is demonstrated that a real failure can only occur within such area. The second step involves evaluation

of the probahility that a real failure occurs, assuming the presence of a potentially unstable zone. In this step the
effects of the finite width of a real failure mode must be taken into account. A procedure is suggested for updating
the estimate of the probability of failure, if it is observed or may be assumed that certain states of loading actually

have occurred and did not involve fajilure.

INTRODUCTION

There has been a continuocus development of probability
based methods for computational analysis of reliability
of earth slopes during the past decade. In the earliest
publications attention was restricted to a probabilistic
treatment of the conventional analysis of stability in a
cross sectional plane of the slope (Wu & Kraft 1970,
Cornell 1972, Alonso 1975, Tang Yucemen & Ang 1976). Key
feature of these analyses is that natural variability of
shearing strength of soil and uncertainty, originating
from limited sampling and testing defects, leads to un-
certainty about the actual value of the factor of safety.
The probability of failure of the slope was considered

to equal the probability that the factor of safety is
less than unity. Either only the most critical slip circle
cr a more or less representative set of potential slip
circles was considered, taking into account decay of
mutual correlation (Morla Catalan & Cornell 1976).

A basically three dimensional failure mode has been
examined in a probabilistic context by Vanmarcke (1977).
He considered a rigid cylinder of finite width in the
along slope direction. His analysis accounts for "end
section” contributions to the failure resisting moment.
Combination of the effects of these contributions, on the
one hand, and the effect of "averaging" of shearing
strength variations along the slip surface, on the other
hand, yields a so called critical width of the failure
mode for which the corresponding probability of occurrence
takes a maximum. The analysis, according to Vanmarcke,
thus predicts the probability of failure as well as the
most probable width of the failure area.

The analysis presented here adopts Vanmarcke's fundamen-
tal concept of modeling spatial variations of the soil's
shearing strength as a random process, as well as his
concept of a "finite width" failure mode. It differs from
his analysis in the sense that this width is not pre-
assigned to some critical value. Instead, it is taken to
be equal to the expected width of the zone where the con-
ventional factor of safety is less than unity, the so
called potentially unstable zone. It is demonstrated that
a real failure mode, if it occurs, necessarily coincides
exactly with such a zone. Whether or not a real failure
actually occurs, depends on the "end section" contribut-
ions to the failure resisting moment. The analysis yields
estimates of the probability that a failure occurs and

the expected width of the failure mode. The adopted
analytical description enabled a further development,
which would otherwise have been cumbersome. A kind of
Bayesian procedure could be designed, by which it is pos-
sible to update estimates of the probability of failure
based on observation of the history of survival of the
slope.

DESCRIPTION OF THE FAILURE MODE

The failure mode adopted here consists of a cylindrical
failure surface, which extends over a finite width £ in
the along slope direction (figure 1). Analysis of equi-
librium of failure generating (overturning) moment and

failure resisting moments predicts failure if

£Mr+2.Me<i7‘-McJ (1)

Here M_ denotes local failure resisting moment due to
mobilized friction along the (potential) failure surface,
M, the "end section" contribution to the failure resisting
moment and M, the local overturning moment.
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Figure 1. Definition of failure mode

From equation ! it is found that existence of a real
failure mode necessarily implies existence of a potentially
unstable zone. Figure 2 indicates a potentially unstable
zone of width £. Now consider the possibility that a real
failure occurs, and its width is less than £ (figure 2a).
The part of the potentially unstable zone complementary

to the failure mode would be excluded from failure. How-
ever, comparison of failure causing and failure resisting
moments, acting on this part of the zone indicate its in-
stability, since
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T M_+ ML <[ Mg + Mg (2)
g TR YLE

where it is assumed that the partly mobilized end section
resistance Mé is less than M. Next, consider the possi-
bility that the width of a real failure mode exceeds {
(figure 2b). Clearly the part of the failure mode outside
£ is generated by internal interaction of shearing forces
M. (with M{<Mg). Comparison of the moments acting on this
part of the failure mode yields a condition for its in-
stability

ML > M- S M+ M, (3)
£, L,

which is obviously not satisfied since M <Me and Mp<Mo,
So it appears that a real failure mode can only occur
within a potentially unstable zone, and its width equals
the width of such zone. It is believed that this state-
ment holds approximately true when a less idealized des-
cription of a failure mode is adopted.
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Figure 2. A potentially unstable zone and hypothetical
failure modes

The factor of safety of a failure mode, including the
effects of end section contributions, reads

£ M

F-=F + Zﬁs (4)

where F is the conventional factor of safety. The proba-
bility that a failure occurs is expressed as

P(f) = P( F£<1 ) = P( F£<J A F<1 )
? (5)
P( F <1 | F<1 ) P( F<1)

Here, P( ) denotes probability of occurrence of an event,
f the event "failure", F<1 the event "the (conventional)
factor of safety is less than unity somewhere along the
slope axis", and F-<1 the event "the factor of safety of

a failure mode of width £ is less than unity". In the
following F(x)<1 will be used to indicate the event "the
factor of safety at the location x in the along slope
direction is less than unity", and F+1 is used to indicate
a down crossing event somewhere along the slope axis, In
equation 5, A denotes intersection of events and denotes
"conditional to".
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PROBABILITY OF OCCURRENCE OF A POTENTIALLY UNSTABLE ZONE

It has been well established that most, if not all, of the
properties attributed to a soil in a natural deposit may
exhibit significant spatial variations (Lumb 1966, Schultze
1971), In a slope stability analysis, variations of scoil
density and shearing strength properties yield the failure
causing and the failure resisting moments and consequently
the factor of safety to be varying quantities in the along
slope direction. It has been demonstrated by Alonso (1975)
that the major part of variations of the factor of safety
is due to variations of the failure resisting moment.
These variations originate from variations of shearing
strength properties, if variations of the pore pressure
distribution is left out of consideration. So, only
variations of shearing strength properties will be con-
sidered here. Moreover, in order to avoid complexity of
notation, the analysis here is restricted to a cohesive
soil in a one layer stratum. This imposes no restriction
to applicability of the methodology in the case of soils
with internal friction angle, applying an effective stress
analysis, or in the case of multilayered strata.

Statistical techniques have been introduced as an adequate
tool for analytical description of the pattern of varia-
tions. In this paper, a random field model, more or less
similar to the model introduced by Vanmarcke (1977), has
been adopted. The erratic pattern of cohesion c is con-
ceived as a normally (gaussian) distributed random variable
at each location within the soil layer. Parameters of the
distribution, i,e. expected mean value u. and standard
deviation 0., may be estimated from a relatively limited
number of borehole samples. Furthermore, the random field
model requires the assessment of a “"decay of correlation”
model, which more or less indicates the "average wave-
length" in the pattern of variations. In our analysis, the
following decay-of-~correlation model has been assumed

Ax2+py?  Az2,
p_ = exp{- Lo L) AN —E—J (6)
c dﬁ dz
v
where pc=pc(Ax,Ay,Az) denotes correlation among deviations

from the mean value of cohesion in two points of the soil
layer, separated by a distance Ax and Ay in horizontal and

Az in vertical direction. Parameters dh and dv will be

referred to as the autocorrelation parameters or distances
of correlation,

In order to reveal the statistics of variations of the
factor of safety F in the along slope direction, consider
the potential slip circle C, indicated in figure 3. The
failure resisting moment can be cbtained from integration
of cohesion along the slipcircle:

M_(x) = R(J:' c(x,¥.r25) dC (7)

where C symbolically denotes the slip circle arc with
radius R and c(x,yc,zc) the local value of cohesion. The

expected mean value of the failure resisting moment reads:

lc| » (8)

where |C| denotes the length of the failure arc. Note that
u is independent of x since u. is so. The expression for

My

Mr(x+A) is similar to equation 7 if x is replaced by x+Ax.
The autocovariance of both resisting moments reads:
+ = +Ax)) - u2
cov(Mr(x),Mr(x ax)) E(Mr(x) Mr(x x)) qu -

=R20Z J 1 o_(bx,y ) dc; dcy

¢ C2

z
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where E( ) denotes mathematical expectation and C; and Cp
denote identical slip circles at x and x+Ax respectively.
The variance of the resisting moment equals the covariance
for Ax=0
02 = cov(M_(x),M_(x))
r r

M
r

(10)

and the coefficient of correlation among failure resisting
moments at x and x+Ax equals by definition:

(11)

er(Ax) = cov(Mr(x),Mr(x+Ax))/0§,r

Correlations among factors of safety are identical to
correlations among failure resisting moments, since the
overturning moment is considered as a deterministic con-
stant. So, for simplicity of notation, the indices M, or
F will be dropped if we refer to correlation. For the
present case it turns out that:

p(Ax) = exp(-(dx/dy)?) (12)

Figure 3. Definition sketch

Cross covariances and cross correlations among failure
resisting moments and factors of safety, associated to
different slip circle arcs, may be evaluated according to
equation 9, if C; and C, refer to different slip circles.

Failure resisting moments and factors of safety are
normally distributed, since a normal distribution has been
assumed for the cohesion. The probability that the factor
of safety F(x)=Mp(x)/M, is less than unity somewhere along
a slope, which extends from x=o to x=L, equals:

P( F<1 ) = P( F(o)<1 ) + P( F(o)>1 ) P( F¥1 ) (13)

if it is assumed that L>>dp. Introducing the so called
index of reliability:

B = (th-Mc,)/cMr or B = (uF—l)/oF (14)
it is found, for small target probabilities:
P(F<l ) = 9(~B) + 0(B) == exp(-482) /-p"(0) (15)

2n

where ¢( ) the standardized Gaussian probability function,
and double prime denotes second derivative w.r.t. x. The
formula for the level crossing probability P( F¥1 ) can be
found in any standard textbook on random processes (e.qg.
Papoulis 1965). It may easily be verified that the expec-
ted width of a potentially unstable zone can be expressed
as:

£ = 21 ¢(-B) exp(k82) / /-p" (o)

In figure 4 the ratio Z/—p"(o) is given as a function of
the index of reliability, according to equation 16. Note
that 1//—p"(o)=0.7dh in the present case.

(16)

PROBARILITY OF OCCURRENCE OF A FAILURE

Recalling equations 4 and 5 and applying the results of
the previous section, the probability of failure can be
evaluated as:

1/C/3

2
(-8 - 7ﬂ2 )
P(f) = —M
¢ (-8)
Note that P(f) approaches P(F<1) as the expected width £

increases largely, and P(f) tends to zero if £ decreases
to zero.

P( F<1 ) (17)
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I

Figure 4. Standardized width £/-p" (o) versus B

A PROCEDURE FOR UPDATING ESTIMATES OF THE PROBABILITY
OF FAILURE

Until now, estimates of the probability of failure of a
slope have been based purely on statistical information
concerning shear strength properties. For any state of
loading, and pore pressure distibution if an effective
stress analysis is considered, a corresponding estimate of
the probability of failure can be determined. These estim-
ates will be referred to as prior estimates. Suppose
that one of the analyzed states of loading is effectuated,
and it is observed that no real failure occurs. If the
fundamental properties of soil do not alter in the course
of time, then there will occur no failure either, if the
same state of loading is effectuated a next time. In other
words, the probability of failure in this state of loading
reduces to zero, This new estimate will be referred to as
the posterior estimate. In this example, the reduction
of the probability of failure is trivial. More interesting-
ly is the question how the probability of failure under
extreme conditions of loading is reduced, if it is observed
that other conditions have been survived, Procedures, which
refer to this problem, applicable to specific situations,
have been reported by Matsuo (1983) and by the author
(1983) .

In order to obtain a general procedure to reduce estim-
ates of the probability of failure, consider two different
states of loading of a slope, referred to as states 1 and
2. The corresponding factors of safety F; and Fj; may refer
to different critical failure arcs, Variances, auto and
cross correlations of these factors of safety and the as-~
sociated prior estimates of the probabilities of failure
can be obtained from numerical evaluation, in accordance
with the previous sections. Now suppose that state 1 is
actually effectuated, and no failure is observed, The
posterior estimate of the probability of failure in state
2, applying the total probability theorem, is expressed as:

P(f3]E1) = (P(£3) - P(£1A£5))/(1-P(£q)) (18)

An overbarred event denotes negation of the event, P(f;)
and P(f;) are prior estimates of the probabilities of
failure, In equation 18 only the probability of inter-
section of events P(fjAf;) is yet unknown. Recalling
equation 5 this probability equals:

£

P(£f1Af,) = P( Fy<1 A qu N F1<l A Fp<l ) (19)

If potentially unstahle zones occur in both states of
loading, then these zones either coincide or they are
separated by a distance, sufficiently large to assume weak
cross correlation among the local factors of safety within
these zones. If the two zones coincide, then the correla-

tion among F; and Fj, and thus among F{ and Fg can be
evaluated as the cross correlation at zero lag. The r.h.s.
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probability of equation 19 can thus be decomposed into two
pobabilities, each one conditional to one of the two
mutual exclusive events. A tedious and lengthy derivation,
which will not be given here, yields the formula:

P(f1Afp) = P(F_)_<1){S(p) Qij + S(o)(l—Qij) P(Fiu)}

where i=2,j=1 if P(Fy<1) > P(F;<1), and i=1,j=2 otherwise,
and p is the coefficient of cross correlation at zero lag
among the factors of safety. In equation 20 is:

2Ma, 2Me27
Y (-8~ +~Ba- P)
) ZloMrl 2 £r0m,,
S(p) = (21)
¥(-By1,-B2,p)
and analogously S(o),
Q1 = Y(-By1,-B2,p)/ ¥(-By,=,p) (22)
Q12 = Y(-B1,-B2,p)/ ¥(=,-B3.,pP) (23)

where ¥( , ,p) is the standardized bivariate normal
probability function. Note that ¥{(a,b,0)=%(a)d(b).
Equation 20 may easily be verified for extremal situations
of cross correlation amcng F; and Fp. A computerized
procedure is indicated for efficient numerical solution

of the bivariate integrals involved in equations 21,22,23.

APPLICATION TO A FICTITIOUS SLOPE

Based on the analysis of the previous sections, the
computer code PROSTAB has been developed. The programme

is suitable for either (quasi) undrained or effective
stress analysis of stability of a slope in homogeneous or
stratified soils. It applies the (iterative) Bishop method
of slices.

As a demonstration of the theory, the stability of a slope
in a cohesive soil has been analyzed. Figure 5 shows a
cross sectional vieWw of the slope. Seven different levels
of overburden loading have been considered, The corres~-
ponding conventional factors of safety range from 1.33 to
0.97, as the overburden increases from zero to 30 kN/mZ.
The associated critical failure arcs are indicated in
figure 5. The selected soil parameters, as well as the key
results of the computations have been summarized in table
I. This table also includes some results, applying
vVanmarcke's theory (Vanmarcke 1977). The computed proba-
bilities of failure, according to both theories, match
reasonably well, except for the case of zero overburden,
where they differ by a factor of 4. The estimated widths
of failure areas are found to agree reasonably well,
except for the case of high probability of failure.

TABLE I
Resul nalys f the slope in figure
q| F g [p(F P(£) L (g E 4 pieey | £2
1.33 [ 2.03| 0.48 | 0.009} 33 0.002 | 21
1.2 1.77 .7 )2 7 .018
1 1.2 |1.34 8 .07 44 .051 0.11
1 1.1 951 0.97 | 0.18 | 0.1
2 1 | 0.550.99 | 0.34 661 0.20
1.02|0.17 | 1. .54 87 0.3 0.76 | 262
0.97 l-.ZL a5 0.72 12
1 iing to Vanmarcke's theory
prokt f failure at g=10 if no failure at g=5 etc.
q in kN/m2, £ in m.; u =17.5, 0 =2.62 kN/m?; d.=45 m.,
.0 m. L=1000 m.
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Figure 5. Cross sectional view of the analyzed slope

CONCLUSIONS

A probability based method for judgement of reliability of
earth slopes has been presented. The method applies to
long "uniform" slopes. Finite width failure modes are con-
sidered, and the effects of "end section" contributions

to resistance against failure are taken into account. The
method predicts the probability of occurrence of a failure
somewhere along the slope axis, and the expected width of
a failure mode. Furthermore, it is demonstrated that global
information, obtained from obcervation of the slope's
history of survival, can be formalized into a procedure
for reduction of the probability of failure.
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