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Probabilistic theory and kinematical element method
Théorie probabiliste et méthode des éléments kinématiques

P. GUSSMANN, Professor of Soil Mechanics, University of Stuttgart, FRG
H. OCHMANN, Dipl.-Ing., University of Stuttgart, FRG

SYNOPSIS

Probabilistic theory in combination with the Kinematical Element Method (KEM)

seems to be an adequate method for a great number of different soil mechanics and foundation engi-
neering problems. Applied to slope stability it can be shown that even with a highly complicated

failure mechanism convergency can be achieved.

INTRODUCTION

For many slopes, dams or retaining structures
and cut-off-walls the probabilistic analysis
seems to become more and more an appropriate
way of considering the problem rather than the
deterministic one. The reason is that the mecha-
nical behaviour of soil in terms of density,
permeability, water content, deformation condi-
tions and strength will be distributed in space
and time within the earth structure always in a
relatively random manner -inspite all site con-
trols.

To quantify the reliability of a structure in a
statistical way a mechanical model for different
failure situations must be implemented into the
probabilistic theory. This model should be fle-
xible enough to represent variable geometry and
strength behaviour and, on the other hand,simple
enough to permit a great number of calculations.
One of the objectives of this paper is to show
that the Kinematical Element Method 1is such a
model.

PROBABILISTIC THEORY

In recent years engineers tried to define the
safety of a structure by means of a probabilist-
ic concept, especially in the field of struc-
tural engineering.

The results of a probabilistic analysis are the
probability of failure (pf) of a system and a
statement about the importance (e«,) of the in-
volved parameters, the so-called basic variables
(x.) .The result reflects the safety including
a1l possible combinations of material properties
and loads. In traditional analysis this is only
possible by means of a parameter variation. More
recent approaches try to introduce the material

behaviour and the behavour due the loads into
the calculation by means of their distribut-
ions.

A measure for the factor of safety is -according
to Hashofer/Lind (1974)- the shortest distance
in the standardized numerical system from the
origin to the generally curved failure surface.
It is calculated by a suitable algorithm where

the failure surface will be approximated by a
tangent hyperplane in a common point.
(Ppx)

This point of design has

iteration.

to be found by

The procedure is done as follows:

-determination of the basic variables and their
distributions ((Ti)—system),

-decoupling of the basic variables; non-Gauss-
distributed variables have to be approximated
by Gauss-distributions ((xi)-system),

-transformation of the system into a standard-
ized independént system ((ui)—system),

the condition of failure
Taylor-expansion 1in the point of
(u*),

~linearisation of
g(u) by a
design (P*) =

-interpretation of the expansion as
plane; the absolute term of this tangential
plane represents the shortest distance (B)
which is denoted as safety index.

a hyper-

-iteration; the vector (u) of the (i)th step
is taken as the point of design for the
(i+1)th step wuntil the condition B, .- B.
< e is satisfied. Normally this metﬁgé will
converge rapidly (Formulas see appendix A1).

Into the probabilistic concept the KEM is
introduced as a system state description. The
object function (f) itself or the resulting
force (RS) of the displaced element is taken as

the system description. For RS > 0 the system is
safe, for RS < 0 it is unsafe and if RS = 0, the
critical state occurs Sturm/Mikota (1983).

KINEMATICAL ELEMENT METHOD
The KEM is an upper bound method in limit load
theory; it <consists of the following steps

(Gussmann, 1982):

- design of an admissible and appropriate fai-
lure mechanism of rigid blocks;

- failure criteria (mostly Mohr-Coulomb) to be
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defined at the boundaries;

- mathematical description of the geometry and
assignment of elements, boundaries and nodes
(topology) ;

- kinematic analysis;
- static analysis;

- definition of the objective function to be
minimized;

- variation of the geometry by means of optimi-
zation procedures.

For problems according to failure mechanisms
like those of Fig. 1, the kinematics can be sol-
ved by a successive solution of two linear equa-
tions for two unknown displacements and the sta-
tics in a similar way for two unknown boundary
forces for each element (see appendix A2).

To avoid internal iterations for a slope stabi-
lity problem the objective function should be
defined rather in terms of forces or energy than
as a factor of safety.

The optimization procedure in finding the abso-
lute minimum of the chosen function with due
consideration of nonlinear inequality con-
straints (no tension forces, no overlapping of
elements during the variation of geometry) is
the main numerical problem of the method. This
will be discussed later.

NUMERICAL TREATMENT

The combination of the probabilistic theory with
minimizing the reliability-index related to the
basic variables (i.e. shear parameters, weight,
hydrostatic and static loads), and the KEM -
with an internal minimization of the objective
function (with respect to geometry)- would seem
to be difficult to obtain convergency. But in-
spite of the coupled minimization procedures the
difficulties are relevant only in the beginning;
they reduce, however, notably within the neigh-
bourhood of the minimum ofpB The reasons are:

- the starting geometry for a set of fixed basic
variables improves in the course of the ma-
thematical procedure;

- the change of the basic variables is small
close to the minimum of B.

These positive effects will only hold, if the
starting geometry 1is really adequate to the
first set of basic variables, this being the
truly hard point of the method. It is felt by
the authors that this problem should not be
solved by means of highly sophisticated optimi-
zation procedures only, but should be supported
by more physically based considerations (for de-
tails see Gussmann, 1984):

- adequate failure geometry according to experi-
mental tests;

- successive refinement of the internal failure
mechanism -for a set of fixed basic variables-
starting with a very simple mechanism consis-
ting a few elements only;
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- grafically supported interactive optimization
procedure;

- various optimization levels, starting with a
robust and simple (but mostly slow) procedure
without any use of derivatives, and ending
with a highly sophisticated optimization pro-
cedure (Davidon/Nazareth, 1977).

The inegquality constraints problem should also
not be treated by mathematically means only (pe-
nalty function) but it should be searched for a
starting geometry without active constraints.
The authors found out, that in this case the
constraints, which appear in the course of the
optimization, will only be small and would nor-
mally disappear without further action.

It should also noted, that the combined problem
can be solved even on a micro-computer within
reasonable time.

APPLICATION TO SLOPE STABILITY

The applicability of the combined proceeding may
be illustrated with an example of homogeneous
slope (slope angle 33.4°;height 13.2 m; strength
parameters ¢ and c).The unit weight ¥ = 20 kN/m®
is introduced as fixed datum. The slope is sub-
devided into 14 elements. Fig 1.a shows the ini-
tial geometry, Fig. 1.b the output geometry of
the last iteration and Fig. 1.c the correspon-
ding field of displacements. The results with 3
calculations for average mean values ¢= ;1; c =
X, and standard deviations o, and g, are as fol-
lows:

1. Example

Input: Gauss N- distribution for x X

1 72
f1 = 19.5°; o9, = 4.6°
fé = 10.0 kN/m? , o, = 3.0 kN/m?
¥ = 20.0 kN/m
Output: 1. Iteration: RS(1) = 4.5 kN/m
7. (= last) Iteration:
RS(7) = .000002 KN/m
a, = 0.856; a, = 0.517

1 2
B = 0.05; Py = 0.50

according to Taylor)

The result can be interpreted as follows:

An operative probability of failure of p_ =50%

was finally obtained. This result may be com-
pared to conventional slope stability analysis
-see e.g. Taylor (1948)- which would yield a
factor of safety F = 1 with the aforementioned
mean values of ¢ and c.

The a-values indicate the probability of failure
to be more influenced by deviations of ¢ than
of c.



output geometry (bl

RSl

ﬁiﬁy

field of displacements (c)

Figure 1

2. Example

Input: Gauss N- distribution for X1, Xy
X, =21.0°; g, = 6.3°
’Tz = 10.0 kN/m*, o, = 3.0 kN/m?
T = 20.0 kN/m?
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Output: 1. Iteration: RS(1) = 309 kN/m

10. (= last) Iteration:
RS(10) = 0.00000007 kN/m

e, = 0.908; a, = 0.418

B = 1.033; Pe = 0.15

(F_ = 1.1 according to Taylor)

3. Example

Input: Gauss log N- distribution for x X

vt T2
X, = 27.0°; o, = 2.9°

;z 25.0 kN/m? ,

¥ = 20.0 kN/m?

L

9, = 2.0 kN/m?

Output: 1. Iteration: RS(1) = 17132 KN/m

7. {= last) Iteration:

RS(7) = 0.00012 kN/m

@, = 0.761; @, = 0.648

B = 5.24; Py = 1077

(FS = 1.8 according to Taylor)

CONCLUSIONS

It could be shown for a particular slope stabi-
lity problem -which is assumed to be typical for
the statistically distributed strength-behaviour
of soil structures- that the combination of two
different theories with minimizing aspects can
be solved by a staggered iterative procedure.The
result is the probability of failure, which is a
different but more appropriate measure of the
reliability of a structure than the conventional
factor of safety if a statistically sufficient
amount of input data 1s available.
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APPENDIX A1l

PROBABILISTIC concept

Independend basic variables (xi)—system

1,x2,...xn)

Mean values of (x)

(x) = (x

(x) = (§1,§2,...xn)

Standard deviations of (x)

.o)

(a) = (01,02,.. n

Transformation to (u,)-system

u, = ——— —= {u}

Transformed state function

glu) = g(u1,u2,...un)
us
tangential
plane condition of

fallure

Taylor expansion in the point P*
n agl(u)
g(u) = glu*) + = (u.-ui*)
i=1 alu,)[p*
i
n dgl{u) n dg(u)
glu) = glu*) + £ —— (ui) - (ui*)
i=1 a(u,) |P* i=1 a(u,) |p*
i i
Hyperplane
n
121- (ui ui) -B=0
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it is

u.*] + glu*)

P*

ag(u)

a(ui) p*

ag(u)

p]u:

1 a(ui) p*

ag(u)

a(ui)P*

4]
1

the calculation is done in the (x.)-system.
At the end the probability of failure is evalu-

ated by:

Pg = o(-B)

APPENDIX A2

KINEMATICAL ELEMENT METHOD

Geometry

X. =X_~=X_,=-X_,

j,i 73 1 1,3
—_ 2

lj,i_ (xj,i +2

sina, =z. ./1., .
1, J,1 1,3

cosa, =X /1 2
1, .1 1,3

a — uf = qa

i,3 s elf

KINEMATICAL

ELEMENT



Kinematics

2, _ JE e
Ve|£,x Vel £99%% | £7 VxVx""Vel£,x
=V sina = vf—ve-—v
Vel£,27"e|f elf” "27 'z " Vel|f,z

v 2yt w v @y

elf T Ys T s fle

£ e .
65 = 6s = GS = slgn(vs)

Successive linear equations

k v =>0b

v
k k ] (v

kv _| 1.x Z,X} R 1 . b -
k1,z kZ,ZJ V2

k1,x= cosa, ; k2; =—cosa2

k1 = sxna1 2 kz' =—51nu2

ELFEMENT
PATTERN

rigid boundary = element 0

KINEMATICS

Statics
\ 6s|°s| : cs=6s|cs|
kg +f =0
Ki,x K2 x o
k = ; q =
k
1,2z k2 z | QZ
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n
£ .
fx = Px+7xA - fs (cscosuS: um,SSlnus)ls
- I
= g e ks,sz
f_ = P_+4v a¥ _ Is (c_sina_ - u cosa_)1
z 2 '3 1 s g m,s s'"s
- fs ks,zQs \
= - sin(af +q )
s s
= cos(af +9 )
s S

Objective function (alternative definitions)

f =D -~ A (D = dissipative, A =kinetical work)
£=vts =z (Qx§x + V.8 ): § = total boundary
N force on flexible
boundary
f = RS = J(824 32)
X z
Optimization
xk+1 - xk L ) uK gk
x = vector of (kinematical) variables (xi,zi)
A = parameter, f(xk+1)< fixk)
g = gradient vevtor in x
M = matrix, which approximates successively the

inverse Hessian matrix of second derivatives.
The authors proposal: M according to-“Davidon
(1975) .
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