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Scale effect in 1g-model tests on horizontally loaded piles

Pieux en modèle sous charges horizontales -  Effet d'échelle

E. FRANKE, Professor, Institute of Soil Mechanics, Technical University of Darmstadt, FRG 

G. MUTH, Res. Ass., Institute of Soil Mechanics, Technical University of Darmstadt, FRG

SYNOPSIS In sp i te  of some expecta t ions arisen in the la s t  years i t  has revealed th a t lg-model
tes ts  have re s u l ts  which are scale dependent. I t  is  shown in th is  paper th a t  the scale e f fe c ts  are 
due to the in f luence  of the e l a s t i c i t y  and the crushing s treng th  of the sand grains. A se r ies  of 
model te s ts  on h o r iz o n ta l l y  loaded v e r t i c a l  p i le s  w ith  va ry ing  diameters was performed to determine 
an a n a ly t ic a l  d esc r ip t io n  of the scale e f fe c ts  which can be used fo r  the t ra n s p o s i t io n  of the model 
te s t  re s u l ts  to prototypes.

1 PROBLEM

C en tr i fuge  model tes ts  are very  expensive and 
o ften  not a v a i la b le .  That is  why conventional 
model te s ts  performed in the na tu ra l  g ra v i ty  lg -  
f i e l d  are s t i l l  o f great importance. But s o i l  
behaviour is dependent on s tress  leve l,  s tress  
path and s t r a in  ra te .  Therefore scale e f fe c ts  
occur when model tes ts  are used to p re d ic t  
p ro to type behaviour. In th is  paper i t  is  
demonstrated tha t scale e f fe c ts  have to be taken 
in to  account and can be assessed by a se r ies  of 
conventiona l model te s ts  i f  model te s t  re s u l ts  
are used to  p re d ic t  p ro to type  performance. This 
r e s t r i c t i o n  disappears only i f  sand can be 
considered as an assembly of r i g i d ,  unbreakable 
gra ins which is ca l le d  "psammic m a te r ia l"  
according to  DIETRICH (1977) and i f  the 
in f lu en ce  of shear bands (narrow rup ture  zones) 
can be neglected. DIETRICH (1977) has shown that 
re a l  sand behaves l i k e  psammic m ate r ia l at low 
s tress  in te n s i t y .  U n t i l  now i t  is  s t i l l  under 
d iscuss ion up to which mean s tress  leve l sand 
can be taken as psammic m ate r ia l such th a t  no 
scale e f fe c ts  are exh ib i te d .  GUDEHUS (1980) 
proposed th a t fo r  mean s tress  leve ls  smaller 
than

( 1)

sand behaves r ig id .  The te s t  re s u l ts  presented 
in th is  paper show th a t  such a l im i t a t i o n  is  not 
v a l i d  and tha t p a r t i c u la r l y  the re s u l ts  obtained 
from small scale model tes ts  w ith  ve ry  low 
s tress  leve l in d ic a te  scale e f fe c ts .  In so fa r  
o lder p u b l ic a t io n s  e.g. th a t o f LUNDGREN (1957) 
and DE BEER (1963) were approved.

2 TASK AND DIMENSIONAL ANALYSIS OF THE PROBLEM

By order of the German Federal Railway (Deutsche 
Bundesbahn) small scale model te s ts  on 
supporting  p i le s  fo r  sound absorbing walls  have 
been performed. The re s u l ts  of the model te s ts  
had to be transposed on the pro totype. In order 
to obta in  the sca l ing  law re la t io n s h ip s  a d i ­
mensional ana lys is  of the problem acc. to f i g .  1 

was c a r r ie d  out. The dimensional ana lys is  gives

the complete set o f s im i l a r i t y  requirements tha t 
must be f u l f i l l e d  both by the model and by the 
p ro to type . In  f i g .  1 the lengths d, 1, h, the 
f l e x i b i l i t y  of the p i l e  El and the displacements 
U and F are defined. The te s t  sand is 
charac te r ized  by the u n i t  weight y0 at te s t  
begin, the average gra in  s ize dG, the modulus of 
e l a s t i c i t y  EG and the crush ing s treng th  CG

u. nf  _______ w  H

of

^  fl 

Fig. 1 Cross section  o f the te s t in g  device

the gra ins (the la s t  two 
psammic m a te r ia l ) _and by two 
parameters 5" and Kg (DIETRICH 
"g ranulom etry", summarizing 
gra in  shapes, g ra in  size_ 
normalized gra in  s izes. K0 

c o n f ig u ra t io n "  at te s t  begin, 
fa b r ic  of the sand and inso 
in fo rm a tion  given by the re l  
should be mentioned, th a t  G 
needed as symbols and th a t no 
magnitude is  required . The p 
in the problem are

U = f(H, d, 1, h, E I , y0 , Eg, Cg, G, Ko) ( 2 )

where f  is  an unknown fu nc t ion . I f  we assume 
psammic behaviour, the modulus of e l a s t i c i t y  Eg 
and the crushing s trength  CG would not appear 
as re levan t parameters. Using the tt -theorem 
from the dimensional ana lys is , eq. 2  can be 
expressed in a dimensionless form, choosing yo

are i n f i n i t e  fo r  
more dimensionless 

1982). G is the 
the in f luences  of 

d i s t r ib u t io n  and 
is  the "g ra in  
rep resen ting  the 

fa r  exceeding the 
a t iv e  _dens ity . I t  

and Kg are only 
knowledge of th e i r  

arameters invo lved
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and d as the q u a n t i t ie s  w ith  
u n i ts

J_ 

d

independent basic

’ S  ^  ( 3)

g is  another fu nc t io n  which is  to be determined 
by the model tes ts .  In order to obta in  
s i m i l a r i t y  between the model and the p ro to type  
the model tes ts  must be designed in such a way 
th a t  the dimensionless products in eq. 3 a t ta in  
the same values fo r  the model and the pro to type

As the parameters EG and CG have the dimension 
of a s tress they should have a va lue  which is c r -  
times greater i n - s i t u  than in the model tes t .  
But th is  is impossib le as u sua lly  the same sand 
in the morfel te s t  and in case of the p ro to type  
is used, m ere fo re  t+ie dependence of the te s t  
re s u l t s  on arid CG must be determined. Only 
For psammic m ate r ia l th is  dependence disappears 
because Eg and Cg are assumed to be i n f i n i t e .  
The dev ia t ions  From th is  r e s t r i c t i n g  assumption 
in na tu ra l  s o i l  are respons ib le  For the scale 
eFFects.

3 SCALING LAW RELATIONSHIPS

Using the same sand in the model te s ts  as i t  is 
assumed to e x is t  i n - s i t u  and im i ta t in g  an 
id e a l iz e d  sedimentation process by app ly ing the 
‘ r a i n f a l l  analogy" (WALKER & WHITAKER 1967) For 
the p repara t ion  of the sand deposit in the model 
conta ine r one gets the same values oF G, K and 

in  the model tes ts  and in - s i t u .  This is  an 
id e a l iz a t io n  as we cannot model the na tu ra l  s o i l  
depos it in a l l  d e ta i ls .  ThereFore model te s ts  
suFFer From the same d e f ic ie n c y  as a th e o re t ic a l  
ana lys is  does, an id e a l ized  m ate r ia l behaviour 
must be presumed.

The scale o f  length X is  defined as the r a t i o  
of corresponding lengths in the model te s t  and 
in  the pro to type

l M
(4)

The index p denotes p ro to type  and the index M 
denotes model. In the case o f 1 g -g ra v i ty  te s ts  
we have

Acc. to eq. 3 the r a t i o  do /d  should be the same 
For model tes ts  and For the prototype, th is ,  
however, is  impossible. OVESEN (1980) has 
demonstrated by cen tr i fug a l^  tes ts  on c i r c u la r  
fo o t in gs  w ith  diameter d on sand th a t  the 
in f luence  of the gra in  s ize can be neglected i f  
d /dG exceeds 30. In the model tes ts  presented 
in th is  paper the average gra in  s ize  of the sand 
was dG = 0.5 mm ( f i g .  2 ) and the diameter o f the 
sm allest model p i l e  was d = 18 mm, thus d /dG =
36. A d d i t io n a l ly  the in f luence  of shear bands on 
the load-d isp lacement behaviour of the p i le  is  
v a n is h in g ly  small. Shear bands a r ise  only at the 
p i le  base and at the ground surface in f r o n t  of 
the p i le .  Fig. 3 shows the F ie ld  oF d is ­
c o n t in u i t ie s  in Front oF the p i l e  which might be 
oF spec ia l in te re s t ,  but th is  rup tu re  zone is 
small in he ight compared w ith  the length oF the 
p i le .  ThereFore the inFluence of the g ra in  size 
can be omitted fo r  th is  model tes ts .

YP = Ym= Y0 

and can derive the scale o f  fo rces x

(5)

( 6 a)

re s p e c t iv e ly

( 6 b)

This shows th a t in a l g - t e s t  the scale of length  
is the only independent sca l ing  fa c to r  th a t  can 
be chosen. The scale o f  s t re s s e s c r is  obtained 
from the scale of length and the scale of fo rces  
by the fo l lo w in g  re la t io n s h ip

Fig.

cr = x • X = X (7)

G R A IN  S IZE  d G [ m m ]

Grain s ize d is t r ib u t io n  oF the te s t  
sand

Fig. 3 Narrow rup tu re  zone at the sand 
surface

Acc. to eq. 3 the f le x u r a l  s t i f f n e s s  of the 
model p i le  must s a t is f y  the fo l lo w in g  co nd it io n

< e j > m  

Yo dM

(EJ)p 

Yo dP
( 8)

Using the scale of length th is  can be expressed 
as

I E3) P

( Ê ) m

dp
(9)

There are d i f f e r e n t  p o s s ib i l i t i e s  in the design 
o f a model p i le  to sa t isFy  th is  requirement. 
F i r s t  the same p i le  m ate r ia l fo r  the model and 
fo r  the pro to type is  considered, thus EP = Em . 
In th is  case pipe p r o f i le s  can be used whereby 
the inner diameter dj of the pipe can be chosen 
independently oF the outer diameter d0 which 
must be determined acc. to the scale oF length.
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ivi th n = dj / d 0 and

I

u 4 
Tl (d 0 - di )

64

we can re w r i te  eq. 9 in the fo l lo w in g  way 

X - 1
-

( 10)

( I D

Obviously th is  term approaches u n i ty  w ith  in ­
creasing values of X. This means th a t the w a ll  
th ickness must become smaller and smaller which 
is r e s t r i c t e d  by p ra c t ic a l  cons ide ra t ions . 
Therefore i t  is  necessary to apply m ate r ia ls  
w ith  a smaller modulus of e l a s t i c i t y  fo r  the 
model p i le s .  In order to derive a c r i t e r i o n  fo r  
the se le c t io n  of s u i ta b le  m ate r ia ls , the ex­
pression 9 has been transformed using the above 
mentioned abbrev ia t ions .

(do >K.
( do) p

(E3)P
4

I T  M - 11 '
( 12 )

This expression 
model p i le  fo r  
w ith  a s p e c i f ic  
chosen. In our 
bored p i le  w ith  
s i tu  w ith  concr 
shows the model 
the modulus of 
p ro to type  acc. 
diameters small 
m a te r ia ls  are 
m ate r ia ls  tend 
se r ies  of p r e l i  
polyv i n y l c h lo r i  
complied w ith 
te s ts

reveals the outer diameter o f a 
a given pro to type  i f  a m a te r ia l  

modulus of e l a s t i c i t y  Em is 
spec ia l case the pro to type  was a 

a diameter of 0,56 m c a s t - in -  
ete B 35 acc. to  DIN 1045. Fig. 4 

p i l e  diameter as a fu nc t io n  of 
e l a s t i c i t y  fo r  th is  s p e c i f i c  

to eq. 12. I t  shows th a t  fo r  
er than 10  cm only s y n th e t ic  

app licab le . U n fo r tun a te ly  such 
to behave v is c o - e la s t i c .  In a 
minary tes ts  i t  was found th a t 
d, polycarbonate and polypropy len  
the requirements of the model

4 CONCEPT, PERFORMANCE AND EVALUATION OF THE 
MODEL TESTS

In order to determine the scale e f fe c t  caused by 
the in f luence  of the e l a s t i c i t y  and the crush ing 
s treng th  of the gra ins expressing the dev ia t ion  
from psammic behaviour, a se r ies  of te s ts  on a

m odel-fam ily  was performed. The model-fam ily  
cons is ted  of a number of model te s ts  on h o r i ­
z o n ta l ly  loaded p i le s  w ith  diameters ranging 
from 1 .8  cm to 25.8 cm , a l l  s im i la r  in accor­
dance to eq. 3 except of EG/ y 0 d and Cg/Yo d. 
D if fe rences  in the load displacement behaviour 
must the re fo re  be due to these in f luences.

The te s ts  were performed using an a i r - d r ie d  sand 
acc. to f i g .  2. The sand was poured by app ly ing 
the " r a i n f a l l  analogy’ such th a t the r e la t iv e  
dens ity  was almost constant D = 0.575 ± 2% and 
Yo = 17 kN/m3. A l l  te s t  data were recorded 
au to m a t ica l ly .  Fig. 5 shows ty p ic a l  load d is ­
placement curves fo r  the p i le  w ith  7 .6 cm 
diameter as an example. Measuring the d is ­
placements at three d i f f e r e n t  po in ts  at the p i le  
head (s. f ig .  1 ) enabled to determine the 
bending deformation of the p i le .  I t  was found 
tha t the bending deformation was small compared 
w ith  the to ta l  displacement. Thus i t  can be 
assumed th a t  the p i le s  behaved r i g i d l y .  This is 
also confirmed by the fo l lo w in g  cons ide ra t ions :

HORIZONTAL LOAD H / v  • d J 
T0

Fig. 5 Test r e s u l t  as an example

H

20

h o r i z o n t a l  l o a d

Yo ' dJ
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Fig.

DIETRICH 
hor izon ta  
space the 
depth dur 
tha t the 
ev a luated 
inc reas in  
r o ta t io n  
Consideri 
r ig id ,  on 
load disp 
is  needed 
f i e l d  of

Observed depths of ro ta t io n  axis

(1982) has shown 
l l y  loaded r i g i d  p i le  in 

axis of r o ta t io n  remains 
ing the loading process, 

depth of the axis 
from U3 and F, remains 

g load fo r  a l l  te s ts ,  
is  located at a depth of 
ng in a d d it io n  th a t  the p 
ly  the determ ination of 
lacement d e s c r ip t io n  fo r  

to obta in the complete 
the p i le .

th a t fo r  a 
a psammic h a l f  

at a constant 
Fig. 6  shows 
o f ro ta t io n ,  
constant w ith  

The axis of 
Zg = 5. 3 d. 

i l e  is  nearly  
an a n a ly t ic a l  
the p i le  head 

displacement

1 0 1 3
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Fig. 7 Test re s u l ts  in d ic a t in g  scale 
e f fe c ts

F ig. 7 i l l u s t r a t e s  the obs 
due to the in f luence  o f Eg 
be expressed in dependence 
Y0 have had the same values 
and Q3 d v a r ie s  w ith  the 
can be seen in f ig .  7 tha t 
diameter the ra te  of hor i 
increases. For the approxi 
displacement curves the fo l  
assumed

erved scale e f fe c ts  
and Cg which can now 
on d. As Eg» Cg and 

in a l l  tes ts  Eg / ' f o d 
p i l e  diameter d. I t  
w ith  inc reas ing  p i l e  
zon ta l displacements 
mation of the load 
lowing power law is

Vo '

Vv

d d ’ 7

where v denotes the minor hardening exp 
according to  DIETRICH (1982) and f  is  con 
fo r  a l l  te s ts  o f the model fam ily . Fig. 8  

the load displacement curves in a log - lo g  
as p a r a l le l  l in e s  w ith  an average slope of 
= 1.97 but d i f f e r e n t  abscissa. In f i g .  9 the 
va lues o f ( U i / d ) / (  H/y0 d3 ) ' " 97 are p lo t te d  ag 
the p i le  diameter fo r  a l l  model tes ts , y ie  
a s t r a ig h t  l in e  w ith  a slope o f a = 0 .9  an 
abscissa of f  = 9. 1 10 . Therefore eq. 13 c 
rew ri t ten

U_ L  - ( j 197
d ' V„  d3 '

(13)

onent 
s ta n t  
shows 
scale 

1 /v 
mean 

a in s t  
1 di nq 
d an 
an be

0 .9
9.1 10

- 6
(14)

must be taken in cm) 
ibes the load displacement 
inve s t iga te d  h o r iz o n ta l l y  

in to  account the scale 
s tress  leve l dependent 

. In a subsequent se r ies  of 
ts  parameter s tud ies w ith  
d loading cases can be 

14 to p re d ic t  the pro-

(Diameter of the p i le  
This expression descr 
behaviour o f the 
loaded p i le  tak ing  
e f fe c ts  due to the 
behaviour of the s o i l  
small scale model tes 
va ry ing  geometry an 
undertaken using eq. 
to type behav iour.

5 CONCLUSIONS

Using conventiona l small scale lg-model te s ts  an 
actua l pro to type  behaviour can be p red ic ted  
accounting fo r  scale e f fe c ts  due to the 
in f luence  of the e l a s t i c i t y  and the crush ing 
s treng th  of the grains. I t  is  demonstrated in 
th is  paper th a t the scale e f fe c ts  can be 
determined by a se r ies  of model te s ts  a l l  
s im i la r  except of the in f luence  o f the 
e l a s t i c i t y  and the crushing s trength  of the sand 
g ra ins . An a n a ly t ic a l  d e s c r ip t io n  of the scale 
e f f e c t  is  derived in terms of the p i le  diameter. 
The knowledge of th is  d e s c r ip t io n  enables to 
study the in f luence  of va r ious  parameters in 
subsequent model tes ts .

F ig. 8 Test re s u l ts  from f i g .  7

F ig. 9

P IL E  D IA M E T E R  d [ c m ]  

Abscissa sect ions from f ig .  8
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