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Seepage losses from small irrigation reservoirs
Pertes par infiltration pour les réservoirs de petite capacité

R. BAKER, Senior Lecturer, Faculty of Civil Engineering, Technion, L.I.T., Haifa, Israel

SYNOPSIS

A large number of small water reservoirs have been, and are currently being built in Israel. One
of the most difficult aspects of the design of such reservoirs is the estimation of the expected

water loss due to seepage.

In fact this consideration is frequently the decisive factor with

respect to the feasibility and profitability of a proposed reservoir.

Frequently, these reservoirs have the following characteristics:

a) The permeability of the foundation soil
b) Water table is deep or non-existant.

is higher or equal to that of the embankment.

¢) The operational policy of the reservoir (i.e., the function h = h(t) where t is time and h deno-

ting the height of water in the reservoir)

Features (a) and (b)
and (c¢)

In the present paper a procedure for the evaluation of water losses

imply that the water losses are mainly due to vertical seepage.
imply that steady state is never realized.

is periodic with period of one year.

Features (b)

is presented. The procedure is

based on the approximation of the actual flow regime by the vertical movement of horizontal wetting

front.
policies are presented in graphical form.

1. INTRODUCTION

One dimensional vertical flow from the bottom
of a reservoir can be analyzed using the clas-
sical infiltration theory (Raudkivi and Callan-
der, 1976). Such an approach suffers from two
practical limitations: i) The specification of
an infiltration problem requires experimental
determination of two constitutive functions
describing the dependence of permeability and
suction on water content. The small scale of
most irrigation reservoirs makes the determina-
tion of these functions for each project prohi-
bitively expensive. 1ii) The infiltration equa-
tion requires numerical solution for each ope-
ration policy h(t). Such numerical solutions
are cumbersome to apply on a regular basis.

There exist two observations suggesting that an
alternative simplified procedure may be feasi-
ble: i) The solution of the infiltration equa-
tion is not too sensitive to the exact form of
the constitutive functions (Neuman, Feddes and
Bresler, 1974). 1ii) The resulting distribution
(with depth) of water content obtained from the
solution of the infiltration problem can fre-
quently be approximated by a sharp wetting
front (Ibrahim and Brutsaet, 1968).

It appears therefore that the process of water
losses from the bottom of a reservoir can be
approximatively modeled by studying the advance
of a sharp wetting front separating an upper wet
(saturated) zone from a lower unsaturated one.
Similar approximation has been used by Bear
(1972).

The procedure can handle any operational policy h(t).

Solutions for simple operational

2. FORMULATION OF THE PROBLEM

Corsider a simplified flow regime as shown in
Fig. 1.
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Figure 1 - Simplified Flow Regime.

On the basis of this figure it is possible to
write:
h +y
L D
q v (1)

where q is the specific discharge,

k - coefficient of permeability

h - height of water in the reservoir
(h = h(t) is the given operational policy of
the reservoir) and y = y(t) is the depth of the
wetting front at time t.

Neglecting volume change due to wetting and

writing an equation for water balance at the
wetting front, the following relation is obtained
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qdt = n(Sc-S )dy (2)

where n.is the porosity and sf,so are degrees
of saturation above and below the wetting front.
Combining equations (1) and (2) yields

dy _ k h

at = ATS;oS) (1 + 7) (3)

It is convenient to introduce the following
non-dimensional variables

Y = y/hy (4.1)
H = h/hg (4.2)
T = kt/n(Sg-S,)h, (4.3)

where hm is the maximum value of h, so that the

function H = H(T) varies between zero and one.
In terms of Y,H and T, eqn. (3) becomes:

dY/dT = 1 + H/Y (5)

Equation (5) is a non-linear ordinary differen-
tial equation which controls the motion of the
wetting front. The term (1 + H/Y) is the
hydraulic gradient i; hence the knowledge of
its solution (the function Y = Y(T) makes it
possible to calculate the rate of losses from
the relation q(T) = k(1 + H(t)/Y(T)). Moreover,
since all water lost from the reservoir are
stored behind the wetting front the cumulative
losses D(T) up to the time T are given by:

D(T) = n(Sg-Sy)h, Y(T) (6)

The boundary conditions for the solution of
eqn. (5) are H(T = 0) = Y(T = 0) = 0. Notice
that T = 0 is a singular point of eqn. (5)
since at that time the term H/Y is not well
defined (it is of the form 0/0).

For convenience, it is possible to approximate
any arbitrary operational policy as a combina-
tion of linear segments as shown in Fig. (2).
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Figure 2 - Operational Policy

Hence, it is sufficient to solve eqn. (5

( or
the linear operational policy H(T) = a}
1

) f
+ b
using the boundary conditions H(T = T = H

1
and Y(T=T1) N ?1. The end values of Y of the

solution in one section is then taken as the
initial value in the next section and the pro-
cedure is advanced section after section.
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3. MATHEMATICAL ANALYSIS
Define a new variable n(T) as

(1) = 20) g (7)
Y(T)

In terms of n, eqn. (5) becomes

Hdn . e(T) (8.1)
dT
where
o(T) =n* +n - a (8.2)

In solving eqn. (8.1) one has to distinguish
between the case ¢ = ¢(T) # 0 and the case

¢ =0 # f(T). The first case corresponds to a
reqgular solution of eqn. (B8.1) while the second
one represents a singular solution of this
equation.

3a. The reqular solution - Here too, it is
necessary to deal separately with the case a=0
(constant water level in the reservoir) and the
case a # 0.

(i) The case a # 0:
In that case dT = dH/a and eqn. (8.1) becomes

dn _ 1 dH
CT 2l e (9)

The solution of this equation is obtained using
standard tables of integrals. This solution
can be represented in the following form:

Y = exp[(C-1In|e[+I(n))/2] (10.1)
with

for a>-1/4

U 1 In [U]
[U|vFa+T  VBFa+T (2n+1)

I(n)={ -2/(2n+1) for a = -1/4 (10.2)
1

_2Zn+t for a<-1/4

VZTaT+1

are tan

,/n a _1

U(n) = (2n+1)-va¥V + 1 (10.3)
and C is an integration constant.

Equations(10) are implicit representations of
the solution since n and ® depend on Y, but this
does not cause any serious difficulties in
application. The segmented form of eqn. (10.2)
may cause the impression that a=-1/4 corres-
ponds to some change in the character of flow.

A careful examination shows, however, that the
solution is continuous at a=-1/4o0nly changing
its formal mathematical representation. At T=0,
H=Y=0 and n,® are not defined, hence it is not
possible to use the information at T=0 (H=Y=0)
in order to evaluate the integration constant C
in egqn. (10.1). Consequently, this solution
cannot be utilized in the vicinity of the sin-
gular point T=0.

(ii) The case a = 0:
In that case H=b#f(T) and egn. (8.1) can be
written as

. bdn
S ST tn
The solution of this equation is
T = Y+b In(1+4n)+C (12)

with C an integration constant.



Obviously, this solution cannot be applied at
T=0 when H(0) = 0 since in that case a=0
implies that the reservoir remains empty.

3b. The singular solution - The solutions
presented above Were based on the assumption
that © # 0. It was shown that these solutions
do not apply in the vicinity of the point T=0.
Since the boundary conditions of the problem

are specified at that point, it is necessary

to find a solution which is valid at T=0. Letus
investigate if such a solution may be obtained
on the basis of the assumption

© =n* +n-1=20 (13)
Using eqn.(13) and H=aT in eqn.(8.1) one get
aT(dn/dT) = 0. Hence, eqn.(13) implies that
n=no=const. is a solution of the differential
equation (8.1). The value of the constant n,
can be obtained from eqn.(13)
_ JT+fa - 1 _ H(T)

"o = =7 —2 T Y(TIV
Since n, is constant. eqn.(14) implies that a
must also be a constant, or in other words, this
singular solution is valid only for a linear
variation of H with time. Substituting H(T)=aT
into eqn.(14) and solving for Y(T) yields

Y(T) = BT

(14)

(15.1)
B = —23 (15.2)
VEa+T -1

Eqn. (15) shows that the wetting front advances
at a constant rate. Notice that in this solu-
tion the hydraulic gradienl i = 1+H/Y = 1+a/8
is well defined at the singular point T=0, H=0,
Y=0.

Finally one has to establish the range of vali-
dity of the singular and regular solutions
(eqns. (15) and (10). It was seen that the
singular solution is valid only as long as

a = const. For this constant value 9o = & = 0.
When ¢ = 0 the regular solution (eqn.(10.1))
cannot be applied since In(0)doesnot exists.

It may be concluded therefore that the singular
solution is valid from the time T=0 up to the
first time when the function H(T) changes its
slope. From that time on the regular solution
applies.

4. RESULTS AND DISCUSSIONS

The above solution was implemented on a micro-
computer and checked for number of conditions.
In every case reasonable results have been
obtained. Comparison with field observation is
in progress at the present but no conclusive
results have been obtained as yet.

An example of a solution is shown in Fig. 3.
This solution_is based on the following input
data (k = 1078 cm/sec, S = 0.8, S, = 1.0,

n = 0.4 and hm = 10 m) which is quite typical

of conditions in Israel. For these conditions
the non-dimensional time T for one year (one
period) is 0.4. The solution was obtained for
the periodic operational policy specified on the
bottom of Fig. 3 and it is shown as the solid
lines in the figure. For comparison purposes
the solution by Bear (1972) which corresponds

to the operational policy H=1 for T30 is shown
as a dashed line on the same figure.
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Figure 3 - Solution of an Exemple Problenm

Following are number of observations (conclu-
sions) which are based on the present analysis:

(a) On first filling the rate of advance of the
wetting front (and hence also the rate of seepage
losses) is constant (See Fig. 3). This result
is fundamentally different from the one obtained
by Bear (1972) which yields infinite losses at

(b) The rate of losses decreases with time and
q approaches assymptotically the value of k.
The decreases in the rate of seepage is rather
slow and in the example shown in Fig. 3,

q = 1.5k after three years of operation.

(¢) When the reservoir is empty (actually not
empty but with minimum water level required to
prevent drying and cracking) theni - 1 and

q ~ k.

(d) If the wetting front meets a regional water
table then the rate of seepage losses no longer
decreases. It can be assumed that horizontal
gradients in the regional aquifer adjust them-
selves to the inflow from the reservoir and a
steady state is achieved. This observation show:
clearly that the presence of high water table

in the vicinity of a reservoir does not improve
the situation from the stand point of seepage
0SS a> is sometimes claimed.
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