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The uplift resistance of shallow embedded anchors

La résistance soulevée des ancres enterrées
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S5YNOPSIS

Results for the uplift capacity of anchors with depth to breadth ratios of up to

eight are presented in this paper. The failure mechanism involves approximately straight rupture
lines from the anchor plate to the soil surface. Considering results of finite element computations

and scale-model tests,

the inclination of a rupture line is found to correspond with the angle of

dilatancy. For sand this angle is typically in the range between 00 and 20°, depending on the
relative density. A simple formula is derived for the uplift capacity. This formula is shown to give
good agreement with empirical data of various researchers.

INTRODUCTION

An embedded anchor consists of a plate which is
connected to the anchored structure by means of
a cable or tie rod. We consider vertical anchors
only, as inclined anchors yield almost the same
failure load. The anchors are used for trans-
mission towers, bulkheads and at sea for close
station keeping. We will consider a rectangular
anchor plate in cohesionless soil, but later the
extension to circular plates and cohesive soil
is discussed. The classification into shallow
and deep anchors is theoretical and relates to
the limit load (or failure load). Instead of the
depth and the limit load we rather use the
embedment ratio and the break-out factor:

embedment ratio H/B
break-out factor P/BLHY

H = depth; B = plate breadth
P = limit load; L = plate length
Y = unit weight of soil
Obviously, the break-out factor increases with

embedment ratio and the typical relationship is
shown in Fig.l. An anchor in the linear or
concave range is considered shallow; otherwise
the anchor is deep.

At Delft University the deep anchors are studied
experimentally, but the shallow anchors are
studied theoretically as plenty of experiments
have been reported in the literature. The typi-
cal feature of shallow anchors is the formation
of approximately straight shear bands from the
edges of the anchor plate to the soil surface.
However, the literature is not fully unanimous
on the straightness of the shear bands and some
researchers assume trumpetshaped lines. In the
following we will only refer to some recent
publications; a complete review of previous work
is impossible because of the restricted length
of this paper. We will show that the inclination
of a shear band coincides to the so-called angle
of dilatancy. This soil parameter can either be
measured in triaxial testing, or calculated from

the friction angle at critical density, ¢.,.

THE ANGLE OF DILATANCY

Shear dilatancy or shortly dilatancy may be
described as the change in volume that is
associated with the shear distortion of an
element of granular material. Here, an element
is assumed to be large enough to contain many
particles as micro-elements. Consider for
instance a pack of spheres arranged in a state
of packing as dense as possible. If any shear
distortion is applied, the relative positions
of the spheres must change, and the total volume
of the pack must increase. This volume change
is named dilatancy.

A suitable parameter for characterizing a
dilatant material is the dilatancy angle V.
Originally, this parameter was only used for
plane deformation. For such situations with
€= 0 it is defined by the equation (Hansen,
1958).

del+ de3 dev

= (1)
de,- de, - 2del+ dew

sin y= -

where the symbol d is used to denote small
increments; de,, is the volumetric strain
increment which is considered positive for
volume increase. We prefer the definition with
the volumetric strain as it also holds for
triaxial compression tests with €,= €, (Vermeer
and de Borst, 1984). Typical data for sand is
shown in Fig.2. Near and beyond peak strength
the dilation rate ds,/de;, attains a constant
values, which can be used in eq. (1) to calculate
the dilatancy angle. For loose sands this angle
tends to zero, but values beyond 15° may be
found for dense sands.

Fig.!
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The meaning of the dilatancy angle is best under-
stood by considering a simple-shear test.
Assuming a test with uniform deformation, we
have
tan = de d (2)

v yy/ Yy
as illustrated in Fig.3. Hence, y is the uplift
angle in a simple-shear test or rather in a
shear band of arbitrary length.

For measuring the dilatancy angle, we recommend
a triaxial test rather than a simple-shear test
as the latter tends to impose non-uniform
stresses in the sample. Instead of a straight-
forward evaluation from test results, the
dilatancy angle may also be calculated from the
friction angle by using one of the following
equations:

. sing' - sing
Sin = T—gingsing,, v
cos¢' cos¢
cos Y= 2 (3b)

1 - sin¢ 51n¢cv

where ¢., is the friction angle at the critical
state (at the critical density). These equations
follow from the stress-dilatancy theory by Rowe
(1971) . The latter gave both theoretical and
empirical evidence for the relationship.

Ei& =] - R R = l+sing' K = 1+Sln¢cv
de, K’ 1-sin¢’'’ 1—sin¢cv
13

We find the equations (3) by substituting Rowe's
relationship in eq.(1).

Fig.4 Kinzm&kically admissible failure mechanism
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KINEMATICAL SOLUTION FOR PLANE STRAIN

A kinematically admissible failure mechanism for
the anchor is shown in Fig.4. A truncated wedge
with an apex angle of 2y is pulled out together
with the anchor plate, which breaks away from
the sub soil. Dilating shear bands seperate the
truncated wedge from the adjacent soil.
Vardoulakis et al.(1981) report a thickness of
about 20 times the mean grain diameter. These
authors also presented data on the inclination
of the shear bands. For a very dense sand with
¢' = 47° and ¢cy = 34°, the angle with the
vertical was measured to be 18°. This measure-
ment corresponds remarkably well to the dilatancy
angle. When using eq.(3a) we obtain ¢= 17°. For
a very loose sand the shear bands were found to
be vertical. An extremely loose sand is in the
so-called critical state with ¢'= ¢oy, so that
eq.(3a) gives Y= 0. Again this prediction coin-
cides with the observation by Vardoulakis et al.

For ¢ >0, the thickness of the shear band
increases because of the dilation. However, no
material dilates infinitely and the use of a
constant dilatancy angle is only a first approxi-
mation. In reality the material becomes looser
and after intense shearing the critical state
with ¢'= ¢év is reached. Consider for instance
an initially dense sand with a porosity of 36
per cent and y= 17°, that dilates to reach the
critical state with a porosity of 43 per cent.
Then, the shear band thickness increases with

12 per cent. The shear strain that is needed to
reach this state is at least 0.4, as can be
computed from eq.(2). The value of 0.4 is a
lower bound as it is based on the approximation
of a constant dilatancy angle, whereas this
angle decreases in reality with increase of the
porosity. The above exercise leads to the con-
clusion that the material inside a shear band
reaches the critical state when the relative
displacement of the shear band boundary is well
beyond half the shear band thickness. In other
words we need more than 2 mm displacement of thez
anchor as the thickness of a shear band is about
4 mm. In small-scale model test on rectangular
plates we measured less displacement at the
limit load, so that the concept of a constant
angle of dilatancy is realistic up to and at peak.

For large-scale tests, the concept might be
questioned. Near the anchor the displacements
may become large, as the truncated wedge does
not behave as a rigid block throughout the test.
This is best seen from Fig.8 which shows results
of finite element computations. Clearly, the
shear bands start to develop near the plate and
grow up to the surface. In fact, the zone near
the plate is sheared very intensively and the
dilatancy angle tends to decrease in this region.
It would thus seem that the concept of a constant
dilatancy angle fails. However, it should be
realized that the shear band may displace to
"fresh” material. The simplest mechanism would
be a shift of the entire shear band into the
truncated wedge above the anchor plate. Another
mechanism is that only parts of the shear band
are shifted inwards, which would result in a
curvature of the band. This mechanism seems to
prevail as we often observe a slightly trumpet-
shaped block above the anchor, rather than
exactly straight shear bands.



Fig.5 Companison of experimental and theoretical
Limit Loads. A data point from Rowe
nepresents the average of 5 tests.

HAND CALCULATION FOR A LONG STRIP ANCHOR

For estimating the limit load, we need informa-
tion about the stresses in the soil. In fact,
we only need the stresses at the shear bands,
say the normal stress o, and the shear stress

T . Then, the limit load is calculated from the
expressions
P = P1+P2+P3, Pl = yBLH, P2 = yLH?*tany

3 = 2L ['(r, cosy-o) siny)dl (4)
Pl is the weight of the soil column above the
anchor; P2 is the weight of the rest of the
truncated wedge; P3 is the shearing resistance
and 1 is the length of a shear band. L/B is
assumed to be so large that we can neglect the
end effects. Short plates will be consider later

(egq.10) . From the Mohr-Coulomb criterion we know
that 1, < o, tan ¢', so that
1
P3 <ZI“£ cosy (tan¢'-tany')o, dl

ilence, a theoretical upper bound is found by
substituting ¢ = ¢'. Then, P3 vanishes and we
obtain

P/YBLH <1 + H/B tan¢'

This upper bound is very suitable as a first
approximation of the limit load, but we are in-
terested in a better estimate because of the
unsafe character of an upper bound.

(5)

For deriving an accurate approximation of the
limit load we may use (Vermeer and Sutjiadi,
1985)

Tn, = Oy tana , o) = o (6)
where(% is the vertical stress and
tana = sin¢'cosy/(l-sin¢'siny) (7a)

Note that eq.(7a) gives the range sin¢'<tana <
tan ¢' depending on the dilatancy angle. The
lower bound is obtained for a non-dilatant
material (y=0) and the upper bound correspondence
to v= ¢'. The equation for tana becomes extremely
simple when we eliminate the dilatancy angle

from eq.(7a) by using eq. (3), namely

(7b)

However, for a further evaluation of the limit
load it is easier to use eqg.(7a). When substitu-
ting the egs (6) and (7a) in eq.(4), we obtain

f 20! al

tana = tan¢' cos¢~cv

51n® - siny

L 1 -sing 1nw
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Fig.6 Companison of expenimental and theornetical
Limit Loads.

In order to proceed the evalution, we need an
assumption on the magnitude of the vertical force
at the shear bands. The simplest assumption is

to take the weight P2 of the two triangles above
the shear bands. In fact, this assumption is also
made in slip-circle analysis for slope stability.
It means that we exclude arching by which the
centre soil column (Pl) may hang on the shear
bands. With this assumption the above equation
becomes

sin¢'- siny P2

P3j & 1 -sin¢'siny siny

(8)

When adding the contributions Pl, P2 and P3 the

break-out factor is found to be

P _, . H

1
YBLH B )

tana = 1 + 2 . COSQcy (9)

VALIDATION BY EMPIRICAL DATA

Results of small-scale tests for rectangular
anchors are reported by Rowe and Davis (1982.)
Their research work is particularly interesting
as it includes data on the dilatancy angle, so
that we can use eq.(7a). In fact, they published
influence charts for use in a hand calculation
which include the effect of the dilatancy angle.
When comparing the results of the influence-chart-
procedure with the formula proposed here, we ob-
tained differences of less than six per cent. For
validating our formula, however, we rather
consider the results of model tests as shown in
Fig.5. We have some doubts about the high dila-
tancy angle of 10°, as a sand with ¢'= 33° tends
to be loose and little dilatant. However, the
dilatancy angle is only of minor influence as can
be seen from the computational results in Fig.5.
The dilatancy angle of 7° that goes with the data
of Sarac (1975) is estimated: it corresponds to
dcv = 32°

Fig.6 shows data
theoretical line

for shorter anchor plates. The
comes from the extended formula

P
YBLH

_ H_ H
=1+ (g+ ) tanp'cos ¢ (10)

This formula reduces to eq.(9) when B/L tends to
zero, i.e. for an extremely long anchor plate.
The theoretical line in Fig.6 is obtained for

¢' = 32° and ¢y = 4° as given by Rowe and Davis
(1982). Das and Seeley (1975) used a sand with a
similar friction angle, so that the theoretical
line also applies to their data.
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Fig.§ Computed nelative velocity contounrs

VALIDATION BY FINITE ELEMENT COMPUTATIONS

The formules (9) and (10) for the limit load are
based on the failure mechanism in Fig.4 and the
assumption that the vertical force on the shear
band coincides with the soil above. For checking
these assumptions, we performed elastoplastic
finite element computations. The material model
employs an elastic shear modulus and Poisson's
ratio and further the constants ¢',y. This so-
called perfectly plastic model is among others
described in the book by Smith (1982). A special
feature of our computer program is the ability
to simulate localization of deformation in shear
bands (de Borst and Vermeer, 1984).

To facilitate the computations the anchor problem
is schematized to a passive trap-door problem.
Then the computation proceeds in two stages.
First the stresses due to the weight of the soil
are computed and subsequently the trap-door is
lifted in a number of displacement increments.
Fig.7 shows two load-displacement curves for a
configuration with H/B = 3.33. With the exception
of the Poisson's ratio, all parameters were
assigned the same value. For the lower curve we
used v= 0.3 giving a Ky-value of 0.43 at the on-
set of lifting. In contrast to the lower curve,
the upper curve shows a marked peak. This is ex-
plained by the use of v= 0.49 which gives a K -
value close to unity. The high horizontal
stresses cause arching between the shear bands
and consequently a high peak load. However, this
effect disappears at continued deformation, and

a unique residual load is found. Although the K -
value is found to affect the limit load, Ko is
not used in the formulas (9) and (10) as we are
interested in the unique residual load rather
than an unsafe peak load.

The above computations were performed for a non-

dilatant material and we obtained vertical shear
bands in both situations (Fig.8). In addition,
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extremely dilatant material behaviour was con-
sidered to observe shear bands at an inclination
y to the vertical. Obviously, the material model
is a rigorous idealisation of real granular
material, but it gives an idea of the influence
of Ky, the inclination of the shear bands and
also on the stresses in the interior of the soil.
When summing up the vertical stresses at the
shear bands, good agreement was found with the
assumption that we made to derive the formulas
(9) and (10).

CONCLULCING REMARKS

In the foregoing restriction was made to cohe-
sionless material, but the theory is easily ex-
tended to include cohesion. For this purpose, we
must use the following relationship between the

shear stress and the normal stress at the shear
band:
- Al L}

L= (cn + c. cotan¢')tana
where c is the cohesion and o is defined by eq. (7).
Then, it can be derived that
P _ H,H vy 2¢, 2d
YBLH - 1 +[(B + L)tan¢ + 7B + T ] cosdey
The dilatancy angle comes in when we use eq.(3b)
for ¢.,. We have shown that the formula is accu-
rate %or relatively long plates, say L>3B. For

shorter anchor plates and also circular plates,
the formula is conservative in the sense tl:at the
limit load is underestimated. In the special case
of a square anchor with L=B we would have a very
simple formula which is also useful for circular
anchors as we may use an equivalent breadth. How-
ever in such cases the limit load is underestima-
ted due to the neglect of higher order terms in
H/B. The extension to include circular anchors is
given in another paper by the writers (1985).
Finally, it is recalled that the formulas are
essentially restricted to shallow anchors. They
have been validated for depth to breadth ratios
of up to eight.
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