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Steady state waves in a porous elastic medium
Ondes stationnaires dans un milieu poreux élastique

L. MONGIOVY’, Istituto di Ingegneria Geotechnica, Palermo, Italy

SYNOPSIS

Assuming the soil composed of two distinct phases - granular structure and water -

the theory of mixtures, an extension of the continuum mechanics to multiphase media, has been
employed to derive the elastic wave equations in conditions of plane deformation and one-dimensional

propagation.

The longitudinal waves propagaticn equation is applied to determine the steady state
response of a soil layer excited by cyclic stress or strain at the boundaries.

The results,

presented in dimensionless form, allow the evaluation of the amplitude and the phase angle of the
displacements at the top of the layer as functions of the frequence and amplitude of the excitation,
of ‘the thickness of the layer and of the compressibility and permeability of the soil.

INTRODUCTION

In geotechnical engineering practice wave prop-
agation is normally studied assuming soil as a
single-phase medium. However, soil is a more
complex material, composed of three distinct
phases - granular structure, water and air. Its
mechanical behaviour is controlled by the 1load
carried by the soil structure, the rest being
carried by the fluid in the voids. Hence, to
predict the real behaviour of soil it is
necessary to take into account the load distri-
bution among the different phases.

The theory of mixtures seems to be a useful tool
to investigate soil response in dynamic condi-
tions. The general theoretical formulation
(Truesdell and Toupin, 1960) is an extension of
the continuum mechanics to multiphase media and
it has been employed to derive the fundamental
equations of dynamically interacting continua
(Green and Naghdi, 1965; Green and Steel, 1966).
Several studies have been carried on this
subject and extensive reviews (Bowen, 1975) and
applications to the soil (Prevost, 1980) are
available.

In the theory of mixtures soil 1is considered
constituted by superimposed interacting continu-
ous media. Each phase is assumed to occupy
simultaneously the volume as a whole.

According to this formulation the elastic waves
equations in conditions of plane deformations
and one-dimensional propagation have been for-
merly derived by the A. (Mongiovi, 1983).

In the present paper the 1longitudinal waves
propagation equation is applied to determine the
response of a layer of soil excited by cyclic
stress or strain at the boundary in steady state
conditions.

A layer submitted to a sinusoidal variation of
base dispiacement or of 1load at the top is
examined. The results allow the evaluation of
the amplitude and phase angle of the displace-
ments at the upper surface of the layer as
functions of the frequence and amplitude of the
excitation, of the thickness of the layer and of
the compressibility and permeability of the
soil.

FORMULATION OF THE PROBLEM

In the theory, assuming the interparticle voids
completely filled by water, soil is considered a
mixture of two constituents, the solid and
liquid phases.

After a suitable definition of kinematics and of
stress variables, the motion, continuity and
constitutive equations are written for each
constituent as for a single phase continuous
medium. A term is added to the motion equations
to take into account the interaction between the
two phases.

In a previous report (Mongiovi, 1983) the
general treatment of one-dimensional elastic
waves propagation in plane strain conditions was
presented. It was recognized that, if the solid
skeleton is assumed to be linearly elastic and
the pore fluid incompressible, the longitudinal
and transversal waves are uncoupled. Further-
more, it was shown that the transversal waves
propagate without relative movement between the
two phases in the same way as a single-phase
medium.

For this reason the study of elastic wave
propagation is restricted to the longitudinal
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waves.
Referring to the above-mentioned report, the
equation of longitudinal wave propagation along

vertical z axis directed downwards 1is the
following
2 3
¢, 2t* 0z ¢, ot 9z oz°

where w is the displacement of the solid phase
in 2z direction at time +t. The propagation
velocity cp and the consolidation coefficient c,
are given by

(p, 1-2n %
e fipe g
k

¢, =

(25)

& Ty

in which and Pw are the soil and water
densities, 4w is the unit weight of water, n is
the porosity and k and m, indicate the permea-
bility coefficient and the volumetric compres-
sibility.

The solution of two different cases of longitu-
dinal waves propagation along vertical direction
in a horizontal homogeneous layer of constant
thickness H is presented here.

The examined cases refer to two typical situa-
tions.

In the first case the upper surface (z=0) of the
layer is assumed to be free of stress and the
lower surface {(z=H) to oscillate with sinusoidal
vertical displacements:

(3a)
(3b)

o'fo,t)=0
w (H,t)= w, sen wt

where &' is the vertical effective stress.
In the second case the layer is supposed to be
resting on a fixed base and the upper surface to

be submitted to normal effective stresses
varying with sinusoidal law:
1 ] t
0 (0,t)= 0 senw (4a)

(45)

sinusoidal varia-
stresses at the

w(H,t)=0

The soil layer submitted to
tions of displacements or

boundary is subjected to forced vibrations
reaching a steady state condition. 1In this
situation the waves become stationary, i.e.

their amplitudes and phase angles are variable
along z direction but constant in time t.

SOLUTION OF THE PROBLEM

vibration the solution of

1959):

For steady-state
equation (1) is (Bisshopp,
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w (2,t)= u(z)cos wt+v(z) sen wt (5)

By substituting equation (5) into equation (1)
two fifth order linear homogeneous differential
equations for u(z) and v(z) are obtained, the
solutions of which are:

U(2)= ¢y cosh az cos bz + C; senhaz cosbz+

(6a)

¢y senhqz senbz + cq coshaz sen bz
v(2)= ¢35 coshaz cosbz +C; senhaz cosbz-

(6b)

-¢,senhaz senbz - c, coshar senbr

where:
2 cf %
2w o 2
Vs (’*wzcz) -1 (7a)
7. v
2 c‘ %
bl & J(14 £ w1 (76)
ZCP wic?

Sinusoidal displacements at the base of the soil
layer

The upper boundary condition (3a) is:
w'(0,t)=U'fo)coswit+vi(0)sen wt =0 (8)

in which the primes denote differentiation with
respect to z.
Deriving equations (6) and imposing u'(0)=v'(0)=
=0, ¢c2=C4=0 is obtained.
The lower boundary condition (3b) is:

w (H,t):U(H)coswf+v/H}senwt‘= w senwt (9)

Then u(H)=0 and v(H)=w,; hence:

senhqH senbH

C,= — W, ’0
! b Sen hZqH sen?bH+cosh3qH cosibH (foa)
coshakH cosbH
= W, (108)

sen hiqH sen2bMH+ cos h2aH cos2bH

The vertical
layer is:

displacement at the top of the

w(0,t)= ¢, coswi+ cysenwit = wy sen (et - %)

(11)

where the vibration amplitude w, and the phase
angle $t are:

(12a)

(128)

3%

wy = (cl+c
P = fan"(—c,/c,)

The resonance factor Ry is defined as the ratio
of the amplitude w, at the top to the vibration
amplitude w, at the base. From equations (10)
and (12a):



'/
Ry = We/Wp =/2/(cas/7 2aH+cos ZLH)}A! (13)

The phase angle between the vibrations at the
top and the base of the soil layer is similarly
deduced by substituting equation (10) into
(12b):

= fan"{fanﬁaﬂ tanbH) (14)

Sinusoidal stresses at the top of the soil layer

In this case the boundary conditions are
expressed by equations (4). At the top of the
layer equation (4a) leads to:

wio,t)= v'(0) cos wt + vio)sen wt =

v a-l(o,t)=m,aé sen wt

(15)

Hence, u'(0)=0 and v'(0)=m,®,. By performing the
differentiation of equations (6), c2 and ca. are
derived:

[
b
Cz=‘""°’tq—;—'b; (16a)
’
Q
Cg= My O¢ a—!Tb_* (be)
The base layer is fixed. Thus:
w(H,t)= u(H)coswt + v (H)senwt = O (17)
From condition u(H)=v(H)=0
c . ~Sysenhal coshat - cysenbH cosbH
‘- coshloH cos¥bH+sen hiqH senb H (18a)
. casenbH cosbH - ¢gsenhaH coshaH
3= cosh3qH costbH+ senhaH sen3b M (185)

are obtained.
The displacement amplitude we
absence of inertial forces is:

at the top in the

w = mVO'tIH

(19)

Defining the resonance factor Ry as the ratio of
the amplitude wy; at the upper surface to w, and
using equations (12), (16), (18) and (19), the
expressions of Rt and the phase angle Tt are
deduced:

%
Ry Wt _ 7 {ﬁosh4q/-l—cos4b /7’)/2} ‘
w, H(q’*b’f/; cosh2qMH+cos 2bH
o' (8 tanhaH -q lan bH
alanhaH +btan bH

(20)

(21)
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DISCUSSION OF THE RESULTS

Wave damping is inversely proportional to the
consolidation coefficient and in the particular
case of no damping (c¢,=»®) the coefficients a and
b (7) reduce to:

a=90 (22q)

b=w/cp (225)

In the case of cyclic displacement at the layer
base the resonance factor Rty (13) and the phase
angle ?t (14) become:

Ry -/cosb///-’

ﬁ: (1-'-’)’(

(23)
(2¢)

€=12,.
In this condition resonance (Ry*®) occurs when:

= (c-2L P =1,2,...
w=(¢-7 )IT <

In the case of cyclic effective stress at the
top, the factor Ry (20) and the phase angle
reduce to:

Ry=(bH) " [tanbH/

(25)

(2¢6)

t=12,.. (27}

% =(c-1)n
nd the resonance circular frequency is the same
as in the previous case (25).
The circular frequency of the
vibration (i=1)

first mode of

waX Sk

(28)

is used to obtain the solution of the problem in
dimensionless form.

The coefficients a and b are rewritten:

2 7! wo /(1+24k }/2,} (29Q)
g fon ] o

where wy,=w/w, and k, is the damping factor
defined as the damping coefficient referred to
the critical damping:

1 CpH
k=
2N o

(30)

The variations of the resonance factor Rt and of
the phase angle . with the dimensionless
frequency o for different damping factors ko,
are presented in Figs 1 and 2 for the first case
and in Figs 3 and 4 for the second case.

In Figs 1 and 3 the resonance peak values of R
at the odd whole numbers of w, decrease as Ko
increases and vanish for k>, when damping is
greater than critical. At the even whole numbers
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Fig. 1 - Resonance factor versus frequency in

the case of cyclic displacement at the base
of the layer.
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Fig. 2 - Phase angle versus frequency in the
case of cyclic displacement at the Dbase
layer.
of W,, in the first case (Fig 1) the resonance

factor Ry has unit value in the condition of no
damping and decreases as kKo increases, whereas
in the second case (Fig 3) Ry has null value for
ko=0 and increases with the damping factor. In
both cases the vibration amplitude decreases
with increasing frequency owing to damping.

The phase angle ?g (Figs 2 and 4) between the
imposed vibration and the response at the top of
the layer increases with damping.
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