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Determination of stability characteristics
Détermination des valeurs de portances

O. PREGL, Professor, University of Agriculture, Vienna, Austria

SYNOPSIS Equations for the bearing capacity factors Nq und N are derived on basis of the

slip line method, taking into account an inclined load, an inclined foundationbase, and an inclined
ground surface. It is analysed, how far it is possible, to divide these factors into base values

Nq o und Nc o ©n the one hand and into inclination factors for load, the foundation base, and the
’ ’

ground surface on the other hand. The bearing capacity factors N_ are calculated numerically. The
limitations of the bearing capacity eqauation are considered. Y

PRELIMINARY REMARK SOKOLOVSKI (1960). For a static solution, we
begin with the equilibrium equations
This contribution cannot give a complete descrip-

tion of the calculation method outlined below. X 9T

Interested readers are referred to another publi- —= & ZX . y. =0

cation of the author (PREGL, 1983) which also 3x 3z X

contains similar derivations for active and a1 P

passive earth pressure. Xz z _ =0
FES 32 Yz T

and Coulomb's failure condition (for c = 0)

INTRODUCTION

The methods to determine the bearing capacity of ox * %2 . _ (UX 02)2 + 12 =90

shallow foundations given in the literature may sin ¢ 2 Xz

be arranged roughly into the following four

groups: According to the Lower-Bound Theorem, we thus

get the lower bounds for the limit load. The

- The limit analysis with static discontinuities limit loads calculated in this way will thus not
determines statically admissible stress fields be greater than the actual values. When applying
which may be separated by static discontin- this method to the design of shallow foundations,
uities. we get safe designs since the lower bound limit

load is acting as the ultimate possible bearing

- The limit analysis with kinematic discontin-
pressure.

uities considers failure mechanisms consisting

of rigid sliding blocks (line ruptures). The bearing capacity of shallow foundations can

- The slip line method is based on the concept be observed by means of the plastic wedge model
of continuous plastic areas (zone ruptures). (Fig. 1).

~ The limit equilibrium methods provide approxi-

mations for rigid block failure mechanisms. We assume that one boundary of this wedge (the

"first boundary") has a known and evenly distri-

So far there has been no clear-cut decision for buted load acting on it:
any one method, possibly because precise results 1
for testing the theoretical methods have become
available only recently (cf. MUHS/WEISS, 1975; 1
BATCKE/SIMONS, 1983). Yet such results can supply
only some indications, due to the many factors
involved. From the theoretical point of view,

the method using the fewest approximations must lg inclination angle of load at first boundary
be given preference.

g = la
v = lg.tan(!s)

la normal stress at first boundary

28 inclination angle of friction stress at
second boundary

a adhesion at second boundary
SLIP LINE METHOD

Thus, static preconditions are given for the
The elementary principles of this method were first boundary. The respective loads are identi-
established by, i.a., KOTTER (1903) and fied by a prefixed index l. The load at the other

2227



8/C/18

wedge boundary (the "second boundary") depends
on the movements of a body contacting the wedge
at this side. We assume that this load satisfies

2

T = a + 20.tan(29)

The stresses for the second boundary are identi-
fied by a prefixed index 2. Accordingly, kine-

matic and static preconditions are given for
this boundary. The evenly distributed weight ¥y

. o N z
is acting within the wedge.

(= v)

The static solution is reached by looking at
three separate areas (areas 1-3), and repre-
sented by a field of so-called static charac-
teristics. For each of these areas we start with
known stresses at their boundaries. The elements
located along the characteristics meet the fail-
ure condition 1 = c + ¢'.tan¢. Fig. 2 shows an
example of presenting the results of such a cal-
culation.
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20 kN/m3, ¢ = 0, ¢ = 300,
-90%, g = 909, lp = 10 kN/m2, ls = (0

Fig. 2: Contact pressure distribution on reaching
the bearing capacity and associated static field
of characteristics.

EQUATION OF BEARING CAPACITY

If, for calculating the bearing capacity, we
start with the three-term equation

2228

cos = yxN + gN_ + cN
qg/ a YN+ aNg (1)

c

(Fig. 3), we make the following three, usually
approximated, assumptions:

- Along the foundation base, the stresses from
weight show a linear increase, while stresses
due to g = y.D.cos g (D = foundation depth)
and ¢ remain constant.

- There is no interdependence between the actions
of y, g, and c¢ (superposition principle).

- The individual factors are independent of the
respective impact quantities y, g, and c; this

means that the factors are only functions of
the remaining variables,
g and L

i.e. the angles ¢, a,

=S
A=)
Ug

qNg+cN¢
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cos 3

und surfa

Zz

Fig. 3: Diagram for the bearing capacity equation

The factors may be determined in several ways:

- Tables (e.g. DIN 4017 T.1; VSS, 1966; PREGL/
KRISTOFL, 1983),

- analytical functions (cf. equations 9 and 16),

- factors for a basic case and inclination factors
i ., lq’ ié, and i;, ground factors gy, gq, and

' and base inclination factors tY' tq’ and té.

¥
9¢c

In the last case, equation 1 becomes

igt + g
YO Y Y Y

+ ) O ) L] L] + n 1)
C(Nc,olcqctc Nc,olc)

cos = xN N i t_ +
ag/cos a q,07q%"q

(2)

Here the inclination factors take into account
the impact of inclination §_ of the contact pres-
sure (this angle correspondg to angle 25§ of Fig.
1), the ground factors incorporate the impact of
ground inclination B8, and the base inclination
factors include the impact of base inclination «a.
These factors depend only on the respective impact
factor (8_, B8 or o) and the friction angle ¢.
With thissmethod, the number of tables required
is reduced to seven, as compared to the numerous
tables for the bearing capacity factors N_, N
and N_. However, the factors i_, g_, and
t_ aré only approximations. Y Y

Y

q

The following derivations are valid only for such
cases, where the first and third plastic areas do
not intersect, i.e. if we get a central fan,
which applies to capacity calculations in any
case.



The factors Nq and Nc may be deduced from the

stresses at the singular point (point of origin
of the system of coordinates in Fig. 1), while
the factors N_ are determined from the distribu-
tion of stresses g_ along the foundation base.
The computation is-“made for constant values of q,
8, ¢, and ds.

BEARING CAPACITY FACTOR NQ

The bearing capacity factor N_ is derived for

c = 0. The origin of coordinafes as shown in Fig.
1 is a singular point, i.e., individual points
can be distinguished which, while showing the
same coordinates (0,0), have different states of
stress, due to the direct stress o = {(o0;+0;)/2

and the direction Xy of the larger main stress

to the z-axis. Of the infinite number of states,
we are interested only in those associated with
stresses !p and 2p at the first and second bound-
aries.

According to the relations for conjugate stresses
p and p' in the plastic state (Fig. 4), we have
for the normal stress g_ at the singular point
for the first boundary (cf. FPig. 1 and 3)

1
1, -
“m T €os(18) - sin ¢.cos{iy)

(3)

and for the second boundary

2

- 2 (4)
m  cos{2§) + sin ¢.cos(2y)

2

where

L1 = sin(1s)
sin(Cy) sin ¢
.2y _ sin(28)
sin(%y) sin ¢
and lg¢ = 8 - n/2
The inclination of the major principal stress at

the first boundary is calculated from

(5)
and

Xg =-S5 —+3 (6)

The connection between normal stresses lo_ and
25 here is given by (cf. G. de JOSSELIN 8e JONG,
m
1979)
-2Ax _tan ¢
2 =1
°m = “n® ° (7)
where
1 1 2, - 2
- Y= "6 Y S 4 1
Bg = o« ~ 8 2 2 2 (8)

If equations 3 and 4 are incorgorated into equation
7, which is then resolved for “p, we get

’p = 1PNq(¢:a,B,26) (9)
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with

cos(2?8)+sin¢cos (%y)
cos (1g)-singcos(1y)

1,1 2,2
% = —2(a-B- _15_£ - _li_é

Nq(¢,a,s,26) =
m
+ E)tan ¢

If a function y of the variables x
can be out into the form

X

17 727 Tt T

y = f1(x1)f2(x2,x1) fn(xn,x1)

then we also have

Y = £ oXqrXy oo oXy (39 (XpuXq i Xy oreeXy o)
e gn(xn,x1,x2,o,...,xn,o) (11)
f1, fz, e fn are functions of the variables

given in parenthesis. f is the function calcu-

1,0
lated from equation 10, if we substitute the
variables Xor Xgr +-e0 X by the constant values

Xy o1 X D 4 characteristic for a certain
0 3.0 n,o

basic case; then this function contains only the
variable Xq. The functions gy like functions fi’
show two variables each, namely x1 and xi; and

in addition they contain the constant values x
These functions characterize

X X 2,0’

3,0 *°°' “n,o"
the connection between any extended case with
two variables and the basic case with only one

variable.

Since equation 9 can be written in the form of
equation 10, we may factorize N_ according to
equation 2. The basic case to be introduced

for the bearing capacity is defined by a = -7/2
(horizontal foundation base), 2§ = O (vertical
contact pressure), B8 = 7/2 and lg = 0 (horizontal

ground surface). From equation 9 we thus have

_ 1 +sin¢

m.tan ¢
Nq,o(¢) " T-5ino

(12)

The inclination factor is determined by
N W2
_ Ny(e.%6)

. cos{28) + sin ¢.cos(2y) e(ZY + *§)tan ¢
a Ny o8]

! = T +sing

the surface inclination factor by

Nq(¢'6) 1-5sing

g = _ (B + 'y - m/2)tan ¢
q Nq 0(6) T sin B - sin ¢.cos{ly)

and the base inclination factor by

) Nq(¢’(!) - e-(za + m)tan ¢

t
9 Vg, ol

BEARING CAPACITY FACTOR Nc

If calculating the normal stresses lum and 29

m
at the singular point, on assuming a cohesion
of ¢ > O, we get the equation in the form of

2p = cN_(¢,c,8,%6)
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only if we put !p = 0 and a/c = tan(?§)/tan ¢.
With these assumptions

_ cos (%8)+singcos (“y) = 1
N, = cotel 1-sing¢ cos(26)] (13)
Bog2
Rim =2 (g-p- —AE8, T
= 2(a-8 3 + 2)tan ¢

Since this equation is valid only for the above
assumptions, the bearing capacity factor N_ is
exact only for this case. The independance

from the guantities c and l!p of the bearing
capacity factor N_ assumed on applying equation 1

consequently is arl approximation.
1 .‘//
/./'
«\Coﬁ " CC"\‘\ ST
0 0 \ .
< ? / \\\
> Ny
- A 2 Ny N E
R g /, : >
& K
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J;?/E&\ l v-87T Jy+b )\ |
Y=k Om | o
5 N \\ /
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N g /
% )
~ |
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\\_\ \\_
p' = cm(cos § + sin ¢.cos y)

p = cm(cos § - sin ¢.cos y)

mit sin y = sin &/sin ¢

Fig. 4: Conjugate stresses

The bracket element of equation 13 comprises two
terms, which means that this equation can be
factorized into the form of equation 10 (similar
to equation 9) only individually for each of the
two terms:

N = N|+N" =Nl ilgltl+Nll ill
c c ¢ c,0°c’c ¢ c,oc

For the basic case we have

N' cot ¢.N
c,o q,0

and

n
c,o

-cot ¢

Inclination factors:

2
Né(¢, 8)

il = f——— =i
c NCIO(¢) q

Surface inclination factor:

NL{(¢,8)

TR T

g - e(28 - w)tan ¢

0 -

2230

Base inclination factor:

_ Né(¢la) _
Nélo(¢) q

BEARING CAPACITY FACTOR N,

It is not possible to derive any axact analytical
expression for the bearing capacity factor N_,
i.e. it must be computed numerically. Y

We have computed tables for the bearing capacity
factors in the manner outlined above (PREGL/
KRISTOFL, 1983).

A comparison of the surface inclination factors
g, and g_ with the values derived from model
tests byIBATCKE/SIMONS (1983) was published
separately (PREGL, 1984).
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