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Formulation and Prediction of Sand Behaviour

Mise en Formule et Prévision du Comportement des Sables

P.A. VERMEER

SYNOPSIS
ven useful for sand deformation problems.

stead of linking well-established relationships,

Dept. of Civil Engineering, Delft University of Technology, Delft, The Netherlands

In combination with Hooke's law the hyperbolic shear strain relationship has been pro-
This combination has limitations, however, and for this

reason several elastoplastic models have been proposed. Indeed,
sibility to link empirical relationships in a realistic and theoretically sound manner.

plasticity theory provides the pos-
However, in-

a tendency has developed to introduce new, formerly

unknown, relationships. The model proposed here is the conjunction of three well-known relationships.

For brevity, it is only described for conditions of triaxial compression.

It is shown that the model

can be used in successful computer predictions of the behaviour of sand under load.

INTRODUCTION

In the early sixties some valuable ideas on the
deformation of sand were published. For increa-
sing stress ratios, Kondner (1963) showed that
the stress-strain curves may be approximated by
hyperbolae with good accuracy. For constant
stress ratios, Chaplin (1961) and Janbu (1963)
showed that the stress-strain curves may be
described by a power law. Hansen (1965) combined
the power law and the hyperbolic function to
describe the shear strain measured in triaxial
tests. Later, this idea was put forward and va-
lidated by Duncan and Chang (1970). Rowe (1962,
1971) showed both theoretically and experimen-
tally that the total volume strain, v, may be
subdivided such that v = vo + vg. Here, vc is
caused by compression and the dilatancy vq is
caused by shear stress. In the course of fifteen
vears several researchers have validated the
above ideas.

In recent years a wide range of elastoplastic
models have become available, and in each parti-
cular model a number of empirical relationships
is assembled. With the exception of the power
law, Lade and Duncan (1975) introduced new rela-
tionships and arrived at a nine-constant model.
Later, sophistications have led to a model with
fourteen material constants (Lade, 1977), Nova
and Wood (1979) assembled gquite different rela-
tionships to obtain a seven-constant model. Here,
the number of material constants is comparable
to the pseudo-elastic model by Duncan and Chang
(1970) , which involves six constants in the case
of a cohesionless material. These authors used
both the shear strain equation as well as the
power law mentioned above. They would have arri-
ve at seven material constants if dilatancy had
not been neglected. Such a seven-constant model
was advocated by the writer (1977, 1980), but
then in an elastoplastic form.

The latter model is considered attractive. In
the first place since it unites previously iso-
lated but well-established ideas for the strains
induced upon primary locading. In the second pla-

ce since the available data on unloading and re-
loading is approximated in a thermodynamically
sound manner.

In section 2 we shall treat five constants by
reviewing the relationships for vy, v, and vg
respectively. We shall only consider primary
loading in triaxial compression, i.e.

Oi 2> Ué = 03, and we shall use
P = 30 +05+ 0y , q=0) - 0;
VA e ¢ Y S ERdTYES

Compressive stresses and contractive strains

will be considered positive.

In section 3 we shall treat unlocading-reloading
behaviour on the basis of two additional con-
stants. In the subsequent sections the attention
will be focussed on predictions and performances.
Many of the details omitted here for lack of
space are reported in the last reference.
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Fig. 1 (a) data from Tatsuoka & Ishihara for a loose sand
(b) experimental and predicted shear strain contours
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2. TRIAXIAL COMPRESSION-FIRST LOADING

Kondner and Zelasko (1963) performed drained
tests for various constant values of the mean
stress p, and they showed that the results
could be well approximated by the hyperbolic
law Y = gq(A + BY) where A and B depend on p.
Meanwhile, a power law had been proposed by
authors who studied the compressibility of sand
under constant ratios of q/p. Using A/B = C

and Bp = 1/a the above laws canbe written as
.- V4 -2 - 8,8
Y Ca_q/p ’ Ve v.p /po (1)

for a sand at a given initial density. Here, C
depends on p, p, is some reference stress and
a, Vo B are true constants. The constant a
stands for the ultimate value of gq/p and it can
be derived that a = 6sin¢'/(3-sin¢'). The value
chosen for py influences vy, since v, represents
the volume strain in isotropic compression up
to p = po. Most published values for B are in
the range between 1/3 and 1/2.

Hansen (1965) expressed C analogous to v, to
obtain

8

y = P _9/p

Y Yo B a-a/p (2)
Q

o

where the constant Y, represents the shear
strain for p = po and q/p = a/2. Virtually the
same equation became well-known by the work of
Duncan and Chang (1970). In the latter's formu-
lation p, is chosen to be the atmospheric pres-
sure and in the first numerator p is replaced
by the minor principal stress,but these diffe-
rences are not essential. Other work has shown
(see for instance section 3) that the above
shear strain relationship is valid for all kinds
of triaxial compression paths.

Shearing of sand involves contraction or dila-
tion, even if the mean stress p is kept con-
stant. This volume strain induced by shear
stress is referred to as dilatancy. In this pa-
per it will be denoted as vy. Most authors agree
that the ratio dvd/dy depends on the existing
stress ratio in the specimen considered. Here,
dvgq and 4y stand for small increments of v4 and
Y respectively. The most convincing theory stems
from Rowe (1962, 1971). This theory involves the
constant k and yields

koé - Ui
v=v +v , dv_ = ——— Ay (3)
) + 1
ko 501
Having formulated Y as a function of stress,
the equation for dvy can be integrated for any

stress path, at least numerically.

The above relationships incorporate the dimen-
sionless constants a, B, Yor Vo and k. We need
the same constant B both for Y and v¢ in order
to model the following feature of sand. Data
from constant stress ratio tests show propor-
tional deformation (Rowe, 1971), i.e. the strain
increases but the ratio between the strain com-
ponents is constant. Vice versa, proportional
deformation in truly strain controlled tests
yields constant stress ratios (Gudehus, 1980).

260

3. UNLOADING-RELOADING

It is recalled that the above relationships are
only valid for first loading. For the shear
strain Y this means that equation (2) can be
used as long as it predicts an increase of Y.
For a better understanding of this criterion we
consider shear strain contours as shown in Fig.1.
Here, data from Tatsuoka and Ishihara (1975) are
fitted by equation (2); the appropriate curva-
ture in the contours was obtained for B = 0.5.

We have first loading as long as the stress path
intersects subsequent shear strain contours. In
terms of plasticity theory this means that the
(shear) yield locus is a shear strain contour.
This statement is validated by the work of
Stroud (1971) and Tatsuoka and Ishihara (1974).
Thus, instead of introducing a new mathematical
expression, we can simply describe the shear
yield locus by means of the well-known equation
(2).

Analogous to the shear strain relationship, the
equation for v, is only valid as long as it pre-
dicts an increase of v.. This criterion leads to
a volumetric yield locus (a cap) perpendicular
to the p-axis in p,qg-plane.

The elastic strains, which are recoverable upon
unloading, are calculated from Hooke's law, e.g.

1 p,1-8

€, = E(oi - voy - voé) , E = E°(§~)
[}

where vV is Poisson's ratio and E Young's modu-
lus. Similar to Duncan-Chang (1970) and Lade
(1977), vand E, are considered to be constants.
However, in those studies Hooke's law is applied
to increments of stress and strain, and this im-
plies that the elastic strains are only recove-
red upon exact reversal of the loading path. For
the secant approach, however, the strains are
recovered even when the unloading path deviates
from the loading path. Although the above equa-
tion is correct from the viewpoint of recovery
and available test results (Vermeer, 1978), it
is thermodynamically not sound. Therefore, the
expression for E must be modified such that a
strain energy function exists. Such a modifica-
tion is achieved by the equations (Vermeer,
1980) :

E = E (c/po)l_B

(o]
1 1 2 2 12 _ 1Y -
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and ©

For triaxial compression we have 0} = O

L}
. 2 3’
may be written as

Thus, 0 is proportional to p in constant stress
ratio paths, and the formulation complies with
the experimental finding that the Young's mo-
duli vary with the magnitude of p. e

The energy function W with property €; = BW/BUi

for i = 1,2,3 is
148 _ 31 1-8B
w=Wwo v oM T 1T+ B E Py



4. ON THE USE OF SCALE MODELS

In geomechanics prototype displacements are some-
times predicted from the results of scale model
tests on the same sand at gravity scale 1. Let
the model bed be carefully prepared such that
the initial stress field is similar to the one
for the prototype, i.e. Op = Op/A, where Op and
op represent the stress fields for the model and
the prototype respectively. The factor A stands
for the ratio of the prototype dimensions to the
model dimensions. For simplicity, it is assumed
that the loading programme does not induce pore
pressures nor inertia effects nor very large
strains. Furthermore, the ratio of external pro-
totype loads to extermal model locads is exactly
A2. under these conditions the above stress-
strain relationships can be used to derive that

s = A1+Bs

P m
where s, s, stand for the prototype and scale
model displacements respectively. The above law
corresponds to the one used by Hettler and Gu-
dehus (1980). Comparing the results of many mo-
del tests, they found B = 0.3 for static loading
and B = 0.4 for repeated loading. Thus the pre-
sent elastoplastic stress-strain law complies
with some results of model tests.

S. A POWDER COMPACTION PROBLEM

A computer program for large strain problems

has been written by Klocosterman and Lissenburg
from Philips Research Laboratories at Eindhoven,
The Netherlands, while the writer assisted in
implementing the constitutive model. Practical
use of such a program requires confidence in the
numerical results obtained, and this has partly
been achieved by consideration of a problem with
a known solution. Such a problem is the computa-
tion of boundary tractions occurring during one-
sided compaction of a fine ferric oxide powder
in a cylindrical die, since experimental results
exist to verify the computational results (see
Strijbos and Vermeer, 1977). Some results for
the cylindrical compact are presented here, sin-
ce it indicates that realistic results can be
obtained on the basis of the constitutive model’
considered.

Fig. 2a shows a cross section over the cylindri-
cal die. It resembles the ocedometer that is used
in soil testing. However, the ratio of height to
diameter of the powder sample is such that one-
sided compression yields a strongly non-uniform
stress and strain field in the interior of the
sample. A segment of the cylindrical sample was
therefore divided into 48 eight-noded isoparame-
tric finite elements, while special interface
elements were used to model the sliding of the
powder along the wall. The dashed load-displace-
ment curve in Fig. 2b was calculated using a
great number of small loading steps. The dashed
curves in Fig. 3 indicate the magnitude of the
computed normal stresses at the boundary when
the height of the sample had decreased from 32
mm to 24 mm. Comparison with the experimental
findings shows that the numerical hindsight is
accurate.
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Fig.3. Normal stresses at the wall of the die.

The material constants used in the computation
were obtained from a series of standard triaxial
tests at very high confining stresses. Chosing
the reference stress p, = 10 MN/mz, the elastic
constants v, E, and the volume strain constants
Vo k were found to be

vV =0.0, E_ =300 MN/m® , v  =0.4 , k = 4.8
respectively. At the high confining pressures
considered only contractive strains vy were mea-
sured. Nevertheless, it could be described by
equation (3). The shear strain constants in equa-
tion (2) were found to be

B=0.3,Yo

0.083 , a = 1.5

Considering large strains, the logarithmic strain
measure was used.

6. PREDICTED AND OBRSERVED PORE PRESSURES

In this section genuine predictions (given before
the event) will be considered. In contrast to

the previous problem, the attention is focussed
on water saturated sand. When a foundation on
such a soil is rapidly locaded, excess pore pres-
sures develop. The pore water then flows from
regions of higher excess pore pressures to
reglons of lower excess pore pressures.
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Fig.4. Finite element mesh for caisson on densified sand.

Eguilibrium conditions apply to the stress field
while conservation of mass and Darcy's law apply
to the pore fluid. Such problems are referred to
as consolidation problems. For elastoplastic
consolidation of soil in plane state of strain,
a computer program named "Elplast” was developed.
The program was successfully used to predict the
behaviour of a caisson in the Oosterschelde es-
tuary of the Netherlands, and also in the case
of a model caisson in a large wave tank. In the
present paper the pore pressures induced by cy-
clic loading of the field caisson will be consi-
dered. For the predicted and observed displace-
ments the reader is referred to a previous paper
(Vermeer, 1978)

The finite element mesh used in the calculations
is shown in Fig. 4. The caisson was assumed to

be linear elastic, but very rigid with respect

to the subsoil. The stress-strain properties of
the coarse sill material were simply taken iden-
tical to the sand. In the coarse sill material,
however, the excess pore pressures were assumed
equal to zero. In situ measurements in the sub-
soil indicated 10~ “m/s for the coefficient of
horizontal permeability and 0.4 x 10-"m/s in the
vertical direction. The programme of loading con-
sisted of several parts, each with a specific va-
riation of the horizeontal locad. A particular part
of the programme is indicated in Fig. 5. The ra-
tio of the arrow lengths for g, and qy indicates
the moderate nature of the cyclic loading; the
cyeclic horizontal load, with a period of 3 se-
conds, is small with respect to the caisson
weight. This implies that the loading induced re-
latively small stress reversals in the elements
of the subsoil. Therefore, we expected little ac-
cumulation of strain in the subsequent cycles.
Furthermore, we did not expect a gradual build up
of pore pressures, since the medium dense soil
could drain towards the coarse sill. It was thus
expected that after some load repetitions the sy-
stem would reach a cyclic steady state during
which the soil would behave more or less elasti-
cally. An elastoplastic model with isotropic har-
dening, is suited for such a problem. As a rule
it produces a short gyclic transient state and
then a cyclic steady state (shakedown). Indeed,
for the in situ test considered, the calculations
showed a cyclic steady state after a few load re-
petitions. The pore pressure variations within
such an "elastic" cycle are shown in Fig. 5.
Here, the elastic bhehaviour was modelled hy means
of the constants

B=0.5, v=1/3,E, =40000kN/m? for po=25kN/mz
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Fig.5. Pore pressure amplitudes for a cyclic steady state.
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