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Identification of Earth Pressure on Tunnel Liners

Détermination de la Pression du Sol sur le Revétemans de Tunnels

G. GIODA Department of Civil Engineering, Technical University (Politecnico) of Milan, Italy
L. JURINA
SYNOPSIS A numerical procedure is presented for the "identification'", or back calculation, of the

earth pressure acting on tunnel liners on the basis of in situ measurements performed on the full sca-
le structure. The "optimal" earth pressure distribution is back calculated by minimizing an error fun-
ction defined on the basis of the inverse equations of the structural problem and of a series of add-
itional conditions. The results obtained by applying the procedure to a significant problem are pre-

sented.

INTRODUCTION

In many practical cases it is of interest to de-
termine the pressure exerted by the ground on tu-
nnel liners after their installation. To this pu-
rpose, two basic approaches are commonly adopted.
The first one consists in the direct measurement
of the earth pressure by means of pressure cells
installed on the liner. The second method consis-
ts in the back calculation of the earth pressure
on the basis of displacements measured at some
locations of the liner (see e.g., Kovari et al.,
1977). It can be observed that both methods have
advantages and shortcomings in their practical
application. For instance, the measurements re-
quired by the second method are probably cheaper
and more reliable than those required by the first
one; on the other hand, the second method requi-
res an analytical tool for transforming displa-
cement data into load distributions and this may
generate some problems when dealing with structu-
res of complex shape or with non-linear behaviour.

A general approach for the identification of the
earth pressure acting on structures of any shape,
on the basis of in situ measurements, has been
presented by Gioda and Jurina (1980). The method
can be seen as an extension of the classical back
analysis: in fact, other conditions can be taken
into account in addition to the inverse equations
of the problem and various types of in situ mea-
surements can be considered (including displace-
ments and rotations of points of the structure;
values of the earth pressure at some locations;
values of concentrated loads; etc.). The "opti-
mal" earth pressure distribution is determined

by minimizing a suitably defined error function.
The procedure allows for non-linear behaviour of
both structure and surrounding medium.

In this paper the application of the above proce-
dure to the calculation of the earth pressure on
tunnel liners is discussed, and the results con-
cerning an illustrative example are presented.

In what follows, underlined capital and lower ca-
se letters denote matrices and column vectors,
respectively; a superscript T means transpose.

PROBLEM FORMULATION

Consider a tunnel liner of general shape and as-
sume, for simplicity, that after its installation
a plane strain situation normal to the tunnel
axis is reached. Under this condition, the liner
can be discretized into a mesh of linear elements
at whose nodes two displacement components and
one rotation are defined. Let the finite elements
be grouped in ng sets S'. For the i-th set, the
earth pressure components normal, p;, and tangent,
pi, to the liner can be approximated by linear
combinations of suitably chosen functions.

plo= wiT(shyeal 5 pl - 2lT(sh) 2] (1a,b)
In eqs. (1), &; gnd &t are the approximating func-

M 1 . N . .
tion vectors; s is the curvilinear abscissa

i : 1 .
along the liner for zone s' and a_ and g; are
the unknown coefficient vectors.

Denoting with N! the matrix of the shape functi-
ons relating the displacements of the nodes of

the i-th set to the displacement functions, the
principle of virtual works allows one to define

the nodal force vector ﬁl, equivalent to the
earth pressure distribution, as follows:

e - uTretas ()

In eq.(2), T is a transfer matrix relating the
pressure components in the n,t reference frame

to those in the global reference system and El

is a vector having p; and p; as entries.

By substituting eqs.(l) into eq.(2), and by writ-
ing eq.(2) for all the element sets, the follow-
ing relationship is obtained for the vector of

nodal forces f equivalent to the earth pressure
distribution on the entire liner:

£=5-a (3)
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Vector a contains all the unknown coefficients

of the functions approximating the earth pressu-
re distribution and § is a matrix depending on
the liner geometry and on the type of approximat-
ing functions.

If linear elastic behaviour is assumed for the
liner, the relationship between nodal forces and
nodal displacements u can be expressed in the
following well known form:

Keu = £ (4)

where K is the stiffness matrix of the assembled
finite element system.

The in situ measurements performed on the full
scale structure provide a certain set of nodal

displacements, g*, and, possibly, the earth pres-

sures, R*, at some locations of the liner. These
data allow one to define the values of some en-
tries of vector u and, through eq.(2), of some
entries of vector f (cf.eq.4). The identification
problem, then, consists in finding the set of pa-
rameters a that fulfil eq.(4), through eq. (3),
minimizing the error existing between the input

data (i.e. u* and E*) and the corresponding data

obtained by the solution of eq.(4) and by eqs.(1).

In order to define the equations governing the
identification problem, let vector u’ group the
displacement components that have to be constra-
ined in order to eliminate any rigid movement

of the liner. Taking into account eq.(3), eq.(4)
can be partitioned as follows:

o
K11 Ky Ky5) | 5

L]
Kpp Kop Kog|squ = | 8 |2 (s)
K31 K5p K53 (g 33

where vector Ue collects the free (unknown) dis-
placements.

Referrin% the nodal displacements to those of
vector u®, the entries of vector u’® vanish. Tak-
ing into account that the matrix composed by sub-

matrices 522, 523, 532 and KSS is not singular,
because of the very nature of vector u’, a static
condensation can be performed on eq.(5) by elimi-
nating the free displacements Ue. Some algebraic

manipulations lead to

*

Ca=u (6a,b)

1o

|
n

{o

where

~ _ -1 '1. - -1
€= [ KypKpg K33 K5y 17 - [ 8p-Kpg Kyg S5 1 (6c)

D =K

K, €+ K

-1

213 533'[ §3'£32 ¢ ] - §1 (6d)
Eq.(6a) relates the parameters a describing the
unknown pressure distribution to the known dis-

placements and eq.(6b) insures that no "fictiti-
ous" nodal reactions are %enerated at the nodes

where the displacements u- are defined.

The measured earth pressure components E* can be
expressed, through eqgs. (1), as linear relations
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between some of the coefficients of vector a, i.e.

Lwa=p (M

In eq.(7), matrix L is composed of vectors 2.

and &, computed at the locations where the earth

t
pressure components are measured. By assembling
eqs.(6) and (7) in an unique system, one obtains

o

(@]
=3

*

e

T
n

ro

(8)

1o
|o

By applying the "least square' minimization pro-
cedure to eq.(8), the following final relation,
leading to the 'optimal' vector a, is arrived at:

c1" ¢ ¢’ (v

*
Lp-fLja=| L) (%)
D D D | o

Note that other conditions, expressed by linear
combinations of coefficients a, could be consider-
ed in the problem formulation. For instance, one
may impose continuity between the pressure dis-
tributions and their derivatives at the boundary
between one set of elements and the next. Concen-
trated loads can be taken into account as well.

The solution of the identification problem is
strongly influenced by three characteristics of
the experimental data, i.e. their number, their
"quality'" and the errors affecting them. The
"quality'" of the experimental information con-
cerns, e.g., the locations in which the measure-
ments are performed, the directions of the dis-
placements measured, etc. For instance, it is
easy to see that the earth pressure distribution
on the entire liner cannot be identified on the
basis of displacement and pressure measurements
concentrated close to the tunnel crown only.

It is well know that every experimental measure-
ment is affected by errors that depend on the
type of measured quantity, on the instrument ad-
opted, on the field conditions, etc. An approxi-
mated way to take into account these errors con-
sists in associating to each experimental infor-
mation a "weight"” depending upon the measurement
accuracy. Other approaches, leading to constrain-
ed minimization problems, can be adopted in order
to allow for the influence of input errors. A
discussion on this point falls outside the limits
of this study and will constitute matter for a
separate paper.

ILLUSTRATIVE EXAMPLE

The approach described in the preceding section
was applied to the back calculation of the earth
pressure acting on the liner shown in fig.l . For
the purposes of this example the "experimental"
data were generated numerically by means of a two
dimensional finite element analysis assuming a
geometry (cf. fig.la) similar to that adopted by
Sakurai and Yamamoto (1976). The displacement



distribution along the liner, as obtained by this
analysis, is reported in fig.2 Note that in
fig.2 the displacements are referred to the nodal
points of the mesh adopted for the identification
analysis (cf. fig.1lb) and that they are divided
by the radius R of the upper part of the liner.
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Two identification analyses, referred to in what
follows as cases b) and c), were carried out. For
both analyses the input data consist of the dis-
placements of the nodes of fig.lb characterized
by odd numbers; thus, only 20 displacement compo-
nents were specified. In order to attempt a simu-
lation of the experimental accuracy, the displa-
cements were approximated to 1/10 mm.

For analysis b) the liner was divided into three
zones: first zone from node 1 to node 7; second
zone from node 7 to node 13; third zone from node
13 to node 19 (cf. fig.1lb). Quadratic distribut-
ions of normal and tangential pressure components
in the first and second zone, and linear distri-
butions in the third zone were assumed. Continui-
ty of both pressure components at the boundary
between the first and second zone was imposed.

For analysis c) the liner was divided into two
zones: first zone from node 1 to node 13 and se-
cond zone from node 13 to node 19. In the first
zone quadratic pressure distributions were assum-
ed, while in the second zone the pressure distri-
butions were linear.

The results of analyses b) and c), compared with
the 'real'" pressure distribution a), are shown

in fig. 3 The computed distributions of the
pressure component normal to the liner approxima-
te the real distribution with a reasonable accu-
racy, while a certain difference can be observed
between real and computed distributions of tan-
gential pressure. This is due to the fact that
(because of the liner geometry) the liner defor-
mation and, in turn, the displacements adopted

Fig. 1 TIllustrative example geometry. as input data for the identification analyses
strongly depend upon the pressure normal to the
liner, while they are weakly influenced by the

i distribution of tangential pressure.
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Fig. 2 Displacement distribution along the liner (u and v are the displacement components in the x

and y directions, respectively).
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Fig. 3 Normal, Py and tangential, Py, pressure distributions aiong the liner. a) "real' pressure
distributions; b) and ¢) results of the identification analyses.
CONCLUSIONS

A numerical procedure has been outlined for the
identification, or back calculation, of the earth
pressure acting on tunnel liners, on the basis

of in situ measurements performed on the full sca-
le structure. Various types of measurements can

be adopted as input data, e.g. displacements and
rotations of structural points, values of the
earth pressure at some locations, values of con-
centrated forces, etc. Such a procedure represe-
nts an useful tool for checking the agreement be-
tween the earth pressure "predicted" by well esta-
blished theories and the actual pressure distri-
bution. It could be also adopted, in the spirit

of Terzaghi's "observational method", for detect-
ing possible variations of the earth pressure dur-
ing the construction works and, if necessary, for
modifying the structural characteristics of the
liner.

An application to a simple problem has been pre-
sented. The results of analyses indicate that the
procedure could be applied to the solution of
problems of practical interest. This suggests
further efforts for research on this topic, espe-
cially related to assessing the influence of ex-
perimental errors on the identification results.
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