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Theory of Non-Linear Seepage

Théorie de la Percolation Non-Linéaire

F.B.J. BARENDS Dr., Head Mathematics and Data Processing, Delft Soil Mechanics Laboratory, Netherlands

SYNOPSIS

The theory of seepage must be based on the system soil-water-air. It should include relevant
phenomena of each of these phases. However, the physical properties of this system are usually
restricted to either saturated deformable or to unsaturated undeformable porous media. In this paper
an attempt is made to extend the contemporary theory to pore fluid flow in a semi-saturated
deformable medium including entrapped air bubbles. Variations of the permeability and the viscosity
due to pore pressure fluctuations are taken into account.

The flow process considered can be formulated in a quite simple form revealing similarity with the
familiar potential equation but in terms of the exponential of the flow potential multiplied by the
so-called coefficient of non-linearity, which contains all the non-linear effects concerned. This

coefficient provides a convenient mean to model porous flow problems in a realistic fashion and it

permits to directly evaluate the practical significance of non-linear seepage.

INTRODUCTION

The subject of this paper is the non-linear
aspects of ground water flow, Considering the
transport process of a pore fluid through a
semi-saturated deformable porous medium one has
to distinguish what flows through what. This
process involves three phases: water, air and
the soil skeleton. Air might be entrapped in the
porous medium blocking pores, or it is conveyed
as micro-bubbles by the pore water, which itself
flows through a deforming (= moving) porous
medium. The rather complex formulation of this
flow process is based on a constitutive equat-
ion and a conservation principle for each phase,
after Verruijt (1969). It can be simplified by
the introduction of a mixture density for the
pore water including entrapped air.

CONSTITUTIVE RELATIONS FOR RELEVANT QUANTITIES

The average density of an air-water mixture,
including entrapped air pockets, air bubbles and
dissolved air, is defined according to:

©
p' = sp + (1-s)p" + swp". (1)

Here, s represents the saturation degree of the
pore content, p is the water density, p" the air
density and w is the air-water solubility
coefficient. The water compressibility B due to
the pore pressure p, defined according to:

B = dp/pdp, (2)

suggests to assume a similar property for the
mixture:

©® swp" does not affect the saturation degree s.

g' = dp'/p'dp. 3

Elaboration in terms of principal material
properties employing Henry's solubility law,
Dalton's partial pressure law, the Boyle-
Mariotte law for iso-thermal conditions, and
Kelvin's surface tension law leads to:

(1/(1-w) - s)/s
b + w(i-b) }'
(1-w) (1-s-b)

B =l3+p_p +2_0{2
v 3r

where py is the vapour pressure, 0 the surface
tension, r the effective bubble radius, and b
the relative bulk volume of stagnant air.

At a certain pressure the surface tension term
becomes negative (w and b are rather constant),
implying instability of free air bubbles.

At this particular point the mixture compressi-
bility B' is quite a constant. Thus, requiring
the term in braces to be zero, i.e.

s 1 - w/2(1-w) - 3b/2,

results with w<<1l into:

P < P¢s
P > Pci (4)

B' = 2w/p, for
B' = B for
Pc (1-sj)pi/w,

where sij and pj represent a reference state
(Barends, 1980). A discontinuity in the
composite compressibility B' is found at a
critical pressure p. since air bubbles become
unstable and dissolve.

In fig. 1 the presented expression for the
mixture compressibility is compared with several
formulae given in literature.
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Fig. 1 The compressibility of air-water

mixtures (after Barends, 1980).

The specific discharge g of this air-water mix-
ture is related to the absolutewater velocity w
and the absolute soil skeleton velocity v,
according to:

q = n(w-v). (5)

This definition allows to introduce a consti-
tutive relation for the generated volumetric
friction force R, which obviously is connected
to the relative pore fluid motion g, according
to:

R = -p'ga/K, (8)

where K represents the hydraulic permeability.
The volumetric driving force H causing the
porous flow can be expressed in terms of a
potential $ for irrotational flow fields:

H=Vp + p'gVz = p'gV3. (7)

If the mixture density p' is a variable and a
function of the pore pressure p only, then (7)
holds in isotropically permeable media. Equi-
librium is satisfied by: H = R, resulting with
(6) and (7) into:

q = -KV§ = -(K/p'g) (Vp + p'gVz), (8)

which is identified as Darcy's law in the case
where K is independent from g. To model non-
linear flow types (ante-linear flow in fine
clay's or turbulent flow in coarse beds) a
linearization about K is suggested. For
turbulent flow types the formula:

k = V(p'g?p/acp|r|), (9)
with Cp being a drag coefficient, D a relevant

grain size and A being a coefficient related to
the flow configuration, has been tested and
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applied in the design process of the foundation
of the Oosterschelde storm surge barrier
(Barends and Thabet, 1978).

The permeability K is related to the porosity n
according to (Barends, 1980):

dK/K = kde/e ; e = n/(1-n). (10)
The factor K is to be determined by experiments;
for natural situations: 3<kKk<5
For large pore pressure fluctuations the
kinematic viscosity Vv of the pore fluid varies
(slightly) and it affects the permeability.
Definition of a property according to:

§ = dv/vdp, (11)

will account for this. The individual soil grain
compressibility a', defined by:

@' = -d(1-n)U/Udp; U: bulk volume, (12)
is included and the last equation of state
assumes a relation between the volumetric strain
€ of the soil skeleton and the pore pressure p:

€ = a(p - PF). (13)

Here, pr is a reference pressure, eventually a
function of time.

CONSERVATION OF THE AIR-WATER MIXTURE

The general conservation for the pore fluid
states (Bear, 1972):

Ve (np'w) + 3d(np')/0t = 0. (14)

In terms of the specific discharge gq this
becomes, employing (5):

-V<(p'q) = Ve(np'v) + d(np')/3t =
.DE D(np')
np Dt + Dot ' (15)

where the soil substantial derivative has been
used (D/Dt = 98/3t + v+V). Note De/Dt = Vev; € =
dU/U. The right hand side can be expressed with
(3) and (12) into:

—Ve(p'q) = p'{RE ' vy DP
Ve(p'a) pri{ge + (a'+nB Yot - (16)

Barends (1980) showed that in case the air is
partially stagnant this must be adjusted to:
1 De Dp

-\ Ll = Ve — ' Yy =2

Ve (p'q) p'{y5 pg + (a'+mBYIpEl (17)
where b represents the relative bulk volume of
stagnant air. Application of (3), (8), (10),
(11), (12) and (13) gives for (17) after some
elaborations:

Vip + Lc-%‘—'»Vp-Vp + miE =

9z
D t Dp
p p'ga “FF (18)
c'pt  K(L-b) Dt '’
where: a" = a + a'/(1-n) - né/x;
m = p'g(ka”" + nB')/n;
c' = K/ (p'glo/(1-b) + a' + nB'H.

Introduction of a potential §, according to:

p'gd$ = d(p—WPF) + p'gdz,
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that case (20) becomes:

P
=2z + f (1/p'g)dp, ¥ = ———, (19) V2§ + w(vd-v5 - 2y - —”; (22)
a'+nf 9z c'adt
ver T/ (1-b)
Since through m all the non-linear aspects are
(completely describing the porous flow provided included, m is called the coefficient of non-
its irrotational character) renders (18) into: linear seepage.
923 + m{v§+v3F - g—f} = {g—f— - viVzl/cr. (20)
The right-hand side of (20) contains the con- THE FIELD EQUATION FOR NON-LINEAR SEEPAGE
vective terms due to the motion of the soil
skeleton. Rewriting (20) into: Equation (22) is easily transformed by a new
3% potential, referred to as the extensive po-

permits to evaluate this convective effect. For
practical values the following holds:

2% + m{V§.VF - g—f}u - ve(mc'Y§) '}

T tential x:

X = exp(m) - 1. (23)

For horizontal flow problems the governing field
equation including the non-linearities con-

v ~ nv w ; .
= — = nv = 1/(— - 1). 21 sidered becomes in terms of s
= X3 /q /(v ) (21) X
3
. Vi = A (24)
In most cases where w>>v the convective effect c'at
due to soil deformation can be disregarded. In which is identical to the familiar equation for
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Fig. 2 Non-linear transient porous flow in a horizontal semi-infinite deformable aquifer due to

a sudden drawdown at the border.
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linear seepage flow.

For vertical flow equation (22) is an Euler
equation. Introduction of a new coordinate:

2'= 2z - mc't, will lead to a field equation
similar to (24). Boundary conditions are easily
expressed in terms of the extensive potential Y,
and incorporation of (23) in an existing
computer program for linear seepage is no
problem. Hence, conventional solutions and
solving methods apply equally well to non-linear
seepage problems.

The field equation for phreatic flow in its
extensive form is identical to (22). Consider a
predominantly horizontal aquifer. Fluctuations
in the pressure p averaged over the actual water
height H can be expressed into:

a§ = dp/p'qg, (25)

giving an extra storage possibility per unit
areal surface. Consider the mass M of water per
unit areal surface:

M = nHp', (26)
The additional mass dM becomes with (25):
dM = nep'dd = nedp/g, (27)

where ne is the effective porosity. Introduc-
tion of a gquantity B, similar to (2), including
phreatic storage results with (26) and (27)
into:

B = dM/Mdp = ne/p'gnH. (28)

Evidently, the preceding analysis is likely
valid for phreatic horizontal flow in aquifers.
Its result permits another significant implicat-
ion of the coefficient m, to wit:

m = p'gB = ng/nH, (29)

whereas the coefficient of consolidation ¢’
reads:

c¢' = KH/ng. (30)

An example of the non-linearity in seepage flow
is represented in fig. 2 showing the response

in a horizontal semi-infinite aquifer due to a
sudden drawdown at the boundary (plane symmetry
and axial symmetry). For practical values
encountered in ground water the coefficient of
non-linearity m yields a value in between 0.001
and 0.05 (m~') for confined flow, but it can be
much larger in phreatic flow situations.

In particular non-linearity becomes manifest in
large flow fields. In this regard the quantity

X is called the extensive potential. It provides
information about the extent of perturbations in
ground water flow. For a more detailed explanat-
ion the reader is referred to Barends (1980).

CONCLUSIONS

The presented theory is valid for coherent pore
water restricting the saturation degree beyond
about 0.85. Air is present in small bubbles or
isolated pockets. It significantly affects the
compressibility, but not beyond a specific
value, since bubbles dissolve. An air bubble in
pore water cannot become infinitely small. The
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field equation governing semi-saturated porous
flow is different for stagnant or conveyed air
bubbles.

The entire flow process can be expressed in
terms of one single variable (potential) only

if the flow is irrotational requiring the
deformation behaviour of the soil skeleton to be
irrotational as well. For a large class of
practical problems the rotational part in the
deformation can be disregarded. Pressure induced
density variations of the pore fluid will not
give rise to rotations in the flow provided that
the medium is isotropically permeable.
Convective effects due to soil deformations are
negligible except if the soil deformation
velocity and the seepage discharge have similar
orders of magnitude. Non-linear types- of porous
flow are easily incorporated in a linearized
permeability. The various non-linear aspects can
be included by one single coefficient,

The non-linear porous flow can be described by
the traditional equation of linear porous flow,
but expressed in terms of the extensive
potential.

Since for most cases in practice the coefficient
of non-linearity is relatively fairly small the
linear theory of seepage flow provides
sufficiently accurate results.
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NOTATION

A sequence of variables following after a "/"
in the formulae composes a denominator:

B = dp/pdp “equals" B = —/— .



