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Drawdown Capacity of Groundwater Wells

Capacité de Rabattement des Puits Filtrants

J. BRAUNS

SYNOPSIS

Senior Engineer, Institute of Soil and Rock Mechanics, University of Karlsruhe, FRG

The drawdown of the groundwater surface near a well is restricted due to the needs

of the groundwater flow towards the cylindrical face of the well. There is no explicit solution for

the actual drawdown at the surface of a drained well,

since the phreatic line does not correspond to

that after Dupuit. In the paper, the results of numerical analyses (FEM) are presented in form of the

guantitative relation between the actual drawdown in the mantle

of a fully drained well and the rel-

evant parameters such as radius of well, radius of influence, and height of aguifer. The results, ob-
tained for the conditions of steady flow (fixed radius of influence) and a fully penetrating well,
are given in graphical form and include the influence of anisotropy.

INTRODUCTION

In connection with the use of groundwater wells
in foundation engineering, the determination of
the yield of a well and of the position and shape
of the free water-surface (phreatic line) are the
main problems. As is well known, Dupuit's solu-
tion for the phreatic line is not valid in the
vicinity of a groundwater well, this in parti-
cular if the well is drained to a major portion
of its height. There are a lot o1 practical
cases like that one shown in Fig. 1, where the
maximum possible drawdown of deeply drained wells
is of great interest to the engineer.
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Fig. 1 Dewatering for Subway Construction Near a

Shallow Layer of Impervious Soil

From the literature available so far, a clear
answer cannot be given to the question of the
minimum height of the seepage face (maximum
drawdown) of a gravity well in which the water
level is lowered to a niveau near or at its bot-
tom end.

PROBLEM AND FRAME

If water is taken from a deep well in a homoge-
neous soil, the groundwater table is lowered in
a circular region, the radius of which (radius of
influence, R) increases with time. A very useful
and simple solution to estimate the radius of
influence in function of the duration of water
extraction from the subsoil, has been given by
Weber (1928):

R = 3 kit (1)

coefficient of permeability
height of aquifer

duration of water extraction
drainable porosity

St x

In practice, it is common to assume that the ra-
dius of influence - instead of growing to in-
finity - is restricted so that, after a certain
period of dewatering, the process of water mi-
gration towards a well can be regarded as quasi-
stationary. From a number of observations in
practice, Sichardt (see Kyrieleis and Sicnardt,
1930) has derived a simple empirical equation
for Rwhich is still frequently used in Germany:

R = 3000 sVk units: R,s[m] (2)
k [m/s]
s = drawdown of water in well

(compare Fig. 2)

For steady-state conditions (water-level inwell,
h, and radius of influence, R, fixed), the well-
known Dupuit-solution (eq. 3, 4 , Fig. 2) has
proved to be a very powerful tool (see also:
Heinrich, 1963).

Fig. 2 Steady-State Flow Towards a Well A-
ccording to Dupuit's Solution
Q __H2-n?
v K~ (3)
ln =
r!:}
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(for the symbols, see Fig. 2)

It is to be seen from eq. (4) that the form of
the phreatic line is not a function of k, but
purely a function of the geometry of the system,
as long as R is fixed.

In fact, the transient process of dewatering a-
round a well has been analysed in more detail in
the last few decades, this with particular regard
to pumping tests. A survey of the vast litera-
ture in this field has been given by Kruseman
and de Ridder (1973), for instance. Furthermore,
new numerical methods have been developed which
allow to make calculations for very complex con-
ditions of transient flow problems. Nevertheless,
simple analytical solutions such as those given
above, are still of great value to the engineer.
In cases where such explicit solutions are not
possible, the application of numerical methods
of calculation in form of parametric investi-
gations can lead to valuable results of common
interest.

One of the problems of this kind is the actual
drawdown of the groundwater surface near a de-
watering well in case of a low water-table in
the well. If we regard a single well in the cen-
tre of its region of influence, three different
situations of drawdown can be distinguished
(compare Fig. 3):

| [P [9pupuir

Fig. 3 Different Drawdown Conditions of a

Single Well

a) The drawdown, s, in the well is onfy a small
portion of the height, H, of the aquifer; in
this case, the phreatic line joins the cylin-
drical face of the well at the water-table in
the well (yr=ro = h).

b) The well is drained to a major portion of its
height; in this case, a seepage-face develops,
while the phreatic line joins the well at a
level by f higher than the water-table in the
well (yr=p, = h + £f).

c) The well iS completely drained (= empty);
then, the water is entering the well over a
certain portion of its height (Yr=ro = £):
which is a seepage-face.

As is well known from various investigations,
Dupuit's solution for the phreatic line (eq.3)
is a good approximation only in the first of the
three cases. On the other hand, Dupuit's eq. (2)

392

for the yield of the well, Q, is valid through-
out O<h=<H, as has been shown by various au-
thors (Chapman, 1957; Heinrich, 1963; see also
Hunt, 1970).

In german literature, the presence of a seepage-
face and, thus, of an upper limit of the draw-
down around a well has often been related to a
certain maximum hydraulic gradient of entrance
along the cylindrical face of the well, such as
proposed by Sichardt (1928) on the basis of em-
pirical data:

I b
max 1 5-\1;‘

In the case of a fully drained well, the assump-
tion of a uniform hydraulic gradient along the
mantle of a well would be far from reality. This
can be seen from the detailed studies of Nahr-
gang (1954) on this subject, from which an ex-
ample is given in Fig. 4:

units: k [m/s] (5)
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Fig. 4 Actual Flow-Net and Entrance-Velocity

for a Fully Drained Well (after Nahr-
gang, 1954).

The increase of the hydraulic gradient of en-
trance with depth can easily be seen from the
flow-net and from the profile of radial filter-
velocities along the seepage-face, y,, in Fig. 4,
which also gives the phreatic line after Dupuit,
for comparison. It becomes obvious from this fi-
gure that the developement of a seepage-face and
the existance of an upper limit of drawdown a-
round a well is purely a question of water-es-
cape from the soil body under the aggravating con-
ditions of axisymmetry (convergence of flow to-
wards the well in plan). In order to discuss
the parameters which define the maximum possible
drawdown, let us consider Fig. 5 where steady-
state conditions of flow are shown for fixed

R- and H-values, but for well-radii ranging from
Io = O up to ry = R.

We start regarding a fully drained or emptied
well with small radius, roqr and we may have

a maximum possible drawdown according to ysq.

If we enlarge the diameter of the well (rgyq —
ro2), a cylinder of soil around the well of ra-
dius rpq1 is removed. This must result in an in-
crease in flow, Q, and, thus, in a steeper phrea
tic line leading to a smaller height of the see-
page-face, yg2. Enlarging ro more and more, say
up to ro —=R, the three-dimensional problem fin-
ally deforms to the case of plane flow through a
thin-walled hollow cylinder (see rp3in Fig. 5
for this), for which higher values of yy result
again, since: yo— H for (R-r,) — O or ro—=R.
Therefor, the function yo = f(rg) has the form
as shown in the left part of the section in



SECTION

5

Fig. 5 Maximum Drawdown of a Fully Drained Well
with Varying Radius

Fig. 5. This indicates that there is a steep re-
lation between the maximum drawdown and the ra-
dius of a well, particularly for small ro/R-
ratios which prevail in the major portion of
cases in the practice of dewatering. In addition
to the relation shown in Fig. 5, the position
and form of the phreatic line must be a function
of the relative height of the system, i.e.: the
H/R-ratio. The relative drawdown-effect will be
the less, the higher the percolated cylinder.

In conclusion from this qualitative discussion,
we find the following statements for the height
of the seepage-face in a wecll:

Yo f (ro/R, H/R),
Yo = independent from k,

and that there are no special physical effects
needed to define and to quantify the maximum
drawdown-capacity of groundwater-wells.
MAXIMUM DRAWDOWN OF FULLY DRAINED WELL

Available Solutions

In order to allow a better guess for the actual
drawdown around a well than is possible with
Dupuit's handy but inexact solution (eq. 4), se-
veral authors have tried to take the presence of
a seepage-face into account. In the following, a
comparison of such solutions is given for the
particular case of a completely drained well (h=
O, compare Fig. 5).

A first relation to define the maximum drawdown
of such a well can be obtained by combining the
maximum gradient of entrance after Sichardt (eq.
5) with Dupuit's formula for the yield of a

well (eq.3). This leads to the following equa-
tion which is very often used in german practice
XE ='¢(____ £9 R in B2 40 1 iQ RinR
“ ol B BT Xy 157k R H Iy

units: k [m/s] (6)
(for the symbols, see fig. 5)

This relation is shown in a yo/H-r,/R-diagram in
Fig. 6 for three values of k (solid lines), and
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for the arbitrary example R/H = 10. The log-scale
of the abszissa is used in order to better be
able to show the results for low ro/R—values.

Yo'H _ EXAMPLE“R/H =10

SICHARDT (1928)
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Fig. 6 Height of Seepage-Face in a Fully Drained

Well, after Several Authors

A numerical analysis of the problem of the free
water-surface near a gravity well by means of
the relaxation method has been published by
Boulton in 1951. From his investigation, the
following expression for the conditions of a fully
drained well can be obtained:
b £
— (7)

21ln—

r

o

=9 _
H

in which: £ _ 1is a factor dependingon ratio ro/H
to some extent (£o#3.75 for common
geometrical conditions)

In Fig.6, Boulton's relation is given with a
broken line which shows that for higher ry/R-
values, yo results negative.

A relation similar to eq. (7) has been given
earlier by Babbitt and Caldwell (1948) who ob-
tained their results from some electric-analo-
gy-tests.

Hall (1950, 1955) has also made numerical analy-
ses with the relaxation method, and he has per-
formed sector-model-tests with sand. His empiri-
cal solution in the form for h = 0 is:

y 1
" (8)

(1+0.021n 2 (1+5 %o §
ro R

Tl

This relation (which is independent from the
ratio R/H) is shown in Fig. 6 through a —:— line
It gives a very small value of y,/H =0.02 (in-
stead of 1) for ro/R —-—-1,

Kozeny (1953) has given a solution for the height
of the seepage face based on the assumption that
the maximum possible entrance velocity of the
water is equal to k:

v r :
‘o oR. R H R 1 2

T - ®r gttt R w7 (9)
H R r. )\ Rrol

This relation (independent from R/H again) is

showen through —-.— in Fig. 6.

T

Another empirical solution has been proposed by
Boreli (1955). His solution is quoted by Mansur
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and Kaufman in "Foundation Engineering" (Leon-
ards, Editor, 1962):

R
y lnH-+2.3 - -
=1 ——fx—|0.131n B -0.0123 an £ -2.3)2
in 2 L £y T, .

r
° (10)

For our example(R/H = 10), eq. (10) results in
the dotted line (Fig. 6), which has a strange
course in comparison to most of the other lines
discussed up to now.

A further approximative analytical solution in

explicit form is that of Heinrich (1964):
1 R
¥ ln[§ (;: + Tw
T RREE ) o
2x Y
o "o

This relationship which is independent from the
parameter H/R, is given by a solid line again in
Fig. 6; it hasno similarity with all the other
curves shown there. In the wide range of r,/R-val-
ues given, yg/H-values between 0.33 and 0.49 re-
sult only.

Regarding the wide scattering of the several
approximative analytical solutions to the prob-
lem discussed here, it is to be expected that one
or the other equation may be valid for certain
conditions of geometry. But it seems question-
able whether one of the solutions is able to
describe the problemover a major portion of the
possible range of variation of the parameters
involved. Besides this, some of the relations
contain the coefficient of permeability, k, as

a parameter (this is not meaningful for steady-
state conditions), and some do not include the
parameter H/R, which must be of some influence
on the result.

In more recent time, the problem of flow toward
a gravity well has been treated with less simpli-
fying assumtions and with better consideration of
the actual boundary conditions. In particular, the
papers of Kirkham (1964) and of Kashef (1965)
are to be mentioned here. Due to the complexity
of the problem, solutions are not obtained in ex-
plicit form; instead, the free water surface
must be calculated by some iteration process.
Whereas the exact solution of Kirkham makes use
of a lot of mathematics and comes out with a
relatively complicated algorithm for an iter-
ative evaluation, Kashef's solution is eased
through some simplifications, and the free sur-
face can easily be obtained by stepwise calcu-
lation starting from the outer face of the per-
colated cylinder (i.e.: at r = R) and moving
towards the well. In Fig. 6, Kashef's solution
is shown through a fine-dotted line. It is of the
same form as those after Sichardt and Kozeny; for
both ry/R = O and r /R = 1 it gives yo/H = 1, as
is necessary so, ang the height of the seepage-
face in the well is a function of H/R also.

Results of Numerical Analyses by FEM

In order to provide some more reliable data for
the maximum possible drawdown of a fully penetra-
ting gravity well than available up to now, sys-
tematic numerical analyses have been performed
using a finite-element-program ("Freesurf 1")
available at our institute (Brauns and Zangl,
1976). This program is a slightly changed and
completed version of a program developed at the
University of California/Berkeley. It allows to
solve two-dimensional or axisymmetrical seepage-
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problems with free surface.

The range of variation of the parameters R/H
and r,/R was as follows:

g 1w
70 10000 - R

As far as the numerical computation is concerned,
we shall not get into detail here. Some of the
results of the analysis have been included in
Fig. 6, for comparison with the results avail-
able from the literature. It reveals that the
solution after Kashef seems to give the most re-
liable results (see below also). The whole of
the results obtained from the computer-analysis
is graphically shown in Fig. 7.
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Fig. 7 Height of Seepage-Face in Fully Drained

Well, Results of FEM-Analysis

As to be expected, there is a typical relation
Yo/H = f(ro/R) for each value of the R/H-ratio.
For both r./R—=0 and rO/R —1, all curves tend
to yo/H = 1. Depending on R/H, the relative
height of the seepage-face in a well, yy/H, may
vary in the full range O through 1, except for
very small values of r,/R. There is a minimumr
Yo/H, corresponding to a maximum drawdown effect,
in the range of 1/10<rg/R<1/2, but these values
are much higher than those for dewateringwells in
common practice which may be in the order of
magnitude of ro/R<0.01. Even in this region of
ro/R-values, the height of the seepage-face
varies within wide borders. Thus, lump values
which sometimes are given in the literature (e.g.:
(Yo/H)pin = 0.5, see Nahrgang,1954 ,1965; Kliber,
1975), are unfounded and indefensible.

In Fig. 7, three lines after Kashef are also
given (see thin lines), for comparison with the
own numerical results. It can be seen that both
methods give nearly identical results. In addi-
tion, some experimental results from model-
tests are included, such as taken from the litera-
ture (¢Babbitt and Caldwell, 1948; ¥ Nahrgang,
1954; X Hall, 1955). The figures in brackets give
the R/H-values corresponding to the test-condi-
tions. As can be seen by interpolation, the experi-
mental data fit pretty well with the analytical
results. In this connection, it is to be mentioned
that an accuracy problem, both in tests and analysis,
arises from the fact that the junction of the
phreatic line and the mantle of the well is a
tangential point. Besides this, capillarity-
effects - even if the evaluatlon accounts for



them - can influence the observations with flow
models (sand models) to a certain degree.

All in all, Fig. 7 may help to make a better
guess for the maximum possible drawdown of awell
in homogeneous and isotropic soil, than has been
possible up to now. It is to be pointed out, in
addition, that reliable results not only for ygq
but also for the form of the phreatic line can
be obtained by application of the relatively
handy analytical method of Kashef, for which not
more than a programmable pocket-computer is ne-
cessary.

Well vyield

It has been mentioned already that Dupuit's so-
lution for the yield of a well has been proved
to be exact throughout Osh=<H, i.e.: indepen-
dent from the development of a seepage-face.
Accordingly, the values of the yield obtained in
our numerical calculations do fit very well with
the theoretical line following from Dupuit's eq.
(2); see Fig. B for this.
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Fig. 8 Well Yield after Dupuit and from Numeri-

cal Analysis

Form of Phreatic Line

Besides the height of the seepage-face or the
maximum possible drawdown of a gravity well, the
form of the entire free surface (phreatic line)
very often is of great interest. In the litera-
ture quoted above, we find one or the other
approximation, from which the various equations
for yo/H given in the preceeding chapter are de-
duced.

In an numerical analysis such as discussed here,
the entire free surface is part of the solution
in each case. Also, if Kashef's method is app-
lied, the form of the phreatic line is determined
over its full length. For the particular example
of H/R = 10, the free surface is plotted in Fig.
9 for four different values of ro/R = 0.05,
0.25, 0.50, 0.75.

The dashed line which is the locus of all pos-
sible points of maximum drawdown for O <ro/R=<
1, is identical with the corresponding line in
Fig. 7. As can be checked by simple calculations,
Dupuit's equation for the phreatic line (eq. 4)
gives a path of the free surface which is very
close to that obtained from the numerical analy-
sis, provided h (which is zero in all our cases
here) is replaced by yg,-

Effect of Anisotropy

In all the above discussion, we have assumed the
soil to be isotropic with respect to permeabili-
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EXAMPLE

H/R =10

= =10 —————
§ == =0
NOTE : VERTICAL SCALE IS ENLARGED BY

FACTOR 5

Fig, 9 Shape of the Phreatic Line (Examples)
Obtained from Numerical Analysis and
from Modified Dupuit's Formula

(lines are nearly identical)

ty. Sedimentary soils, as is well known, very
often show a more or less pronounced anisotropy
in permeability (k,_ >k ). As has been shown in
special tests (Brauns ¥nd witt, 1981) and through
analysis (Wittmann, 1980), this anisotropy is
mainly due to low-scale stratification (not due
to flatness and orientation of particles).

In fact, the form of the phreatic line around a
well and, thus, the height of the seepage-face
is a function of the ratio kh/ky. If kh/kv >1,
the free water-surface is higher than for iso-
tropic conditions (at extremum: k;, /ky =o0, i.e.:
ky = O, ~yo = Y = H); on the contrary, if kn/ky
< 1, the phreatic line is lower than in the case
of isotropy (see Heinrich, 1963).

With the FEM-program, anisotropic conditions can
easily be investigated. Such computations have
been performed in order to demonstrate the in-
fluence of the kh/ky-ratio. Some of the results
are presented in Fig. 10, namely for two values
of R/H: R/H = 10, 1.

0
0.0001 0.001 0.01 01 ro/R 1

Fig. 10 Effect of k-Anisotropy on Height of
Seepage-Face in Fully Drained Well

As can be seen from the diagram, an anisotropy-
ratio of kp/k, = 10 which may sometimes prevail
in natural sediments due to "low-scale-stratifi-
cation", is of a noteworthy influence in the
height of the seepage-face in an well. Note: the
lowest curve in Fig., 10 is not relevant for prac-
tice, but it shows the influence of kp/ky-values
less than unity, in tendency.
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Complete information on the effect of anisotropy
would call for a full set of curves for each of
the lines in Fig. 7. Presentation of this materi-
al would be beyond the frame of this contribu-
tion.

SUMMARY AND CONCLUSIONS

The problem of maximum possible drawdown of a
completely drained single groundwater well, fully
penetrating a homogeneous soil layer of finite
depth has been discussed in this paper. It has
been shown that the presence and extent of a see-
page-face are purely due to the needs of the see-
ing water to reach the well and that the numer-
ous explicit equations for an approximative cal-
culation do not give realistic results. New data,
obtained from a parametric numerical investi-
gation using a finite-element-program, are pre-
sented here (Fig. 7). They show that - depending
on the geometrical boundary conditions - the
height of the seepage-face may vary in wide
borders and that lump values in terms of a cer-
tain ratio yo/H are untenable. The numerical re-
sults obtained fit very well with a relatively
simple and handy solution after Kashef (1965),
which is of the non-explicit type.

It has further been shown that a very good guess
for the free water-surface (phreatic line) can
be made with the help of the classical equation
after Dupuit, provided the height of the seepage-
face is used instead of the actual water-level
in the well (Fig. 9). As far as the yield of a
well is concerned, the FEM-analysis confirmed
that Dupuit's solution holds independently from
the presence of a seepage-face. In regard to

the influence of an anisotropy in permeability,
its effect proved to be remarcable in that the
greater ky/ky, the higher the seepage-face (Fig.
10) .

These investigations are going to be extented
towards cases of arbitrary water levels in the
wells. It is expected that by means of some ex-
emplary calculations a sufficient accuracy of
Kashef's method can be proofed here also. A much
more complex problem is that of the maximum
drawdown of wells in well-groups. Handy solutionsg
of common applicability cannot be given here,
since these are three-dimensional problems with
further variables.

In order to clarify the relations for wells in
multi-well-groups, the conditions of drawdown
in the region of each individual well must be
considered in a simplifying manner. Starter point
for such an investigation may be Forchheimer's
solution for a multi-well-system. The results
presented herein may serve as first hints in
such a configuration also.
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