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The workhardening rule and the yield function necessary for the development

of the constitutive relationship of soils are shown to be able to be uniquely determined from the

test data.
on a sand sample and a clay sample.

INTRODUCTION

In developing the constitutive relations for
soils, it has been a common practice to adopt,
a priori, a workhardening rule and a yield
function, and then check the validity of these
assumptions by the normality rule. If the
check is unsatisfactory, usually some
modification of the yield function is made, or
an unassociated flow rule is assumed. Such
procedure does not ensure a unique solution for
a given boundary problem. The method suggested
below permits the direct determination of the
workhardening rule and yield function from the
test data, and besides, due to the coincidence
of the selected yield surface with the plastic
potential surface, the normality law is
satisfied, and the uniqueness of solution is
guaranteed.

DESCRIPTION OF METHOD

In the application of finite element method to
the solution of boundary problems in soil
mechanics, it is necessary to express the
elasto-plastic stress-strain relation of soils
in the following form:

(so} - [o],, {s¢) )

wherein [D]ep is termed the elasto-plastic

matrix.

By using the incremental theories of elasticity
and plasticity it has been proved that [DL

can be written in the following form: (e.g.
Zienkiewicz, 1977)
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wherein [D] is the ordinary elastic matrix;
f 1is the yield function; g is the plastic

The suggested procedure for their determination is illustrated by the experiments made

potential function; A is the workhardening

modulus.

f and g can respectively be represented by:

£(65;,H) = 0, or f(p,q,H) =0 (3)

ij

g(0;; ,H)

0, or g(p,q,H) =0 (4)

wherein p is the octahedral normal stress,

and q is the octahedral shear stress:
p = (Ui+02+03) /3 (5)
2 2 21% 4
q = [(0,-0)%+(0,-05)%+(0,-0) %/ (7 (o)

H is the workhardening parameter, and it has
been given in various different forms by
different authors. Different forms of H may be
termed different workhardening rules, and their
relations with the workhardening modulus A in
the expression of[D]e as given in Equ. (2) are

listed below: (Huang, 1980)
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v)  H=H(EPSH

& %[_db :g% b'gT g_gj (11)

I

In order to determine the required

workhardening rule of H together with the yield
function f, the plastic potential function g
and the workhardenlng modulus A, so that the
elasto-plastic matrix [DJ may be evaluated,

two kinds of conventional 5011 test may be
performed, viz. 1) isotropic consolidation test
and 2) deviatoric triaxial compression test
with UZ = 03 = const. From the test curves

thus obtained, we can determine, corresponding
to any point M(p,q) on these curves, the
magnitudes of its two octahedral plastic strain

and EP.

these points on a p-q diagram, and labeling
beside each point the value of H calculated
from the measured octahedral components

¢ and EP,
of H. These contour lines will represent the
yield loci f(p,q,H) = 0. By assuming
different functions of H we would get different
contour maps as illustrated in Fig.3a-3d
inclusive. Thus it is seen that by using
different workhardening rules we would get
radically different shapes of yield loci or
yield functions f.

components 55 Now by plotting

we can trace out the contour lines

In order to get a unique solution for a given
boundary problem the workhardening rule and the
yield function for a given soil may be uniquely
determined from the test data by the following
procedure.

and EP

respectively with the axes p and q in

a p-q diagram as shown in Fig.4. Then we can
indicate the direction of the resultant vector
of the incremental octahedral plastic strain

Let us make the axes of &8 coincide

component55£€ and 8P by a small arrowhead at

any point M(p,q) 1in this diagram. By
connecting these arrowheads we can trace out a
family of flow lines. Orthogonal to these
lines is the family of loci of the plastic
potential lines g. By trial and error we can

find an expression of H(ts,EP) or a

workhardening rule which will make the loci of
the yield function f(p,q,H) coincide with
these loci of plastic potential function g.
The yield function £ = g thus determined is
unique and satisfying the normality law.

By substituting the functions of H and f = g
thus obtained in Equ.(11) and Equ.(2) we can
find the function of the workhardening modulus

A and evaluate the elasto-plastic matrix [D ep’

EXPERIMENTAL RESULTS

Sand of medium density

Description of Chengde sand used in the
experiment:

632

Median diameter, d50 = 0.18mm

Uniformity coefficient, d, ,/d = 2.8
i : 60/ 710

Specific gravity of

soil particle, GS = 2.63

Max. void ratio, €nax - 0.80

Min. void ratio, €nin - 0.40

The sand sample tested is of relative density
Dr = 64%. The unit weight of the soil sample

tested is controlled within the limit
Y= 16.7 + 0.1 kN/M°.

The Ev

consolidation test is shown in Fig.l. The
deviatoric triaxial compression drained tests
are made with Gs = 100,300 and 500 kPa

2 shows the (0;-03) ~ €, and
= 500 kPa,
wherein Ea denotes total axial strain.

- log p curve obtained from the isotropic

respectively. Fig.
EV-EA test curves obtained for 63

The following procedure is used to separate
the total strain measured directly in the
experiments into elastic and plastic strain

components. For the axial strain 59' the
elastic component 82 is taken as the difference

between the total axial strains measured
respectively before and after complete unloading.
The difference between the total axial strain

and its elastic component is taken as its
plastic component 52- It is further assumed

that pure shear does not induce elastic
volumetric strain, and that the change in
elastic volumetric strain Ate is due entirely
to the change of ap = (AU +2AU )/3. The
magnitude of Ae can thus be determined

directly from the unloading and reloading
branch of the € - log p curve obtained in the
isotropic consolidation test. Plastic
volumetric strain component 58 is then
calculated by

e -¢

- 55. By using the relationship

P - gP _ P
& = el - ey/3
strain component can be determined.

the plastic octahedral shear

From the values of 65 and Ep thus determined

for any point M(p,q) on the 03 = const.

curves the contour maps of the yield loci f
corresponding to different workhardening rules
of H, e.g. H =gP , E H = wp and
- P P
jjseij'seij
in Fig.3a to 3d inclusive. It can be seen from
these figures that the yield loci thus

determined are radically different from one
another.

are plotted as shown

From the 65 and EP values thus determined for

points on a given U% = const. test curve we can

plot in the 65 - gP plane a corresponding
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58 - & curve. The slope of this curve at any

particular point M(p,q) will represent the
direction of the incremental resultant plastic
strain vector passing through the corresponding
point drawn in a p - q plane. Based upon the
data thus obtained the flow lines and the
equipotential loci may be traced out in the

P - q plane as shown in Fig.4.

From Fig.4 we find that for the tested Chengde
sand with Dr = 64% the equipotential loci g,

which is identical with the yield loci f, may
be approximated by ellipses, thus

£=g=2q%+ 20 -70)% - 788% = 0

wherein the workhardening parameter H, as found
through trial and error, is
H = [(55)2 , 0.05(EP)2] x 104 + 2 [P

The workhardening modulus A as calculated from
Equ. (11) gives

A= (28p - 36H)[8x1o4(p - 7H) &P
+ 2x10%q (8P - 0.001 /[EP))]

The elastic shear modulus G as found from the

unloading and reloading branch of the

US = const. test curves is

- 0.33 0.60

G = 217p, (B__E_;__ﬂ)
a

wherein P, is the atmospheric pressure.

The elastic bulk modulus K 1is found from the
unloading and reloading branch of the E - log p
curve, and it is given by

K=dp/ d CV = 350p

In order to check the accuracy of the selected
f, H, G and K with the experimental data we
have prepared the q - €and q - €, diagrams

as shown in Fig.5 and Fig.6. The agreement
between the calculated and experimental values
is found to be satisfactory.

Compacted clay

Description of the saturated compacted clay
used in the experiment:

Liquid limit 45%
Plastic limit 21%
Specific gravity 2.74
Size gradation:
0.25 - 0.05mm 10%
0.05 - 0.005mm 65%
< 0.005mm 25%

Unit weight 16. 4kN/M
Molding water content 20%

The clay is compacted with compaction effort
about 40% greater than the Standard Proctor

Method. Max. dry density = 17.0 kN/M3
Optimum moisture content 19.5%.

By using the same method as for sand, the
factors £, H, A, G and KX determined from
experiment are

£ = q2+0.55(p-5.75H)2-(1.30+6.75H) 2 =
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Figs.7-12 inclusive are prepared from the
experimental results obtained for the clay, and
they correspond respectively to Figs. 1-6
inclusive prepared for the Chengde sand.

CONCLUSION

The elasta-plastic matrix [D]ep , which

represents the mathematical model expressing
the constitutive relationship for soils,
contains 3 independent factors, viz. (1) yield
function f, (2) plastic potential function g
and (3) workhardening modulus A, All of these
3 factors are functions of the workhardening
parameter H. Arbitrary selection of a
workhardening parameter H, or a workhardening
rule, therefore, would not be able to guarantee
a unique solution of [D ep’

This paper has demonstrated that the plastic
potential surface g can be uniquely determined
from the experimental data irrespective of the
selection of the workhardening rule or the form
of the workhardening parameter H. Thus it may
be argued that [D] can only be uniquely

determined prov1ded the selection of the form
of H 1is such, that it would lead to a yield
surface f which coincides with that plastic
potential surface g determined from the
experimental data as previously noted,

The trial and error method suggested in this
paper for the determination of the 4 unknown
function g, £, H and A directly from the
test data has been applied for a sand sample of
medium density and a sample of compacted clay.
Satisfactory agreement between the calculated
and experimental results is obtained.
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