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On the Validity of Winkler's Principle
Sur la Validité de Principe de Winkler

Th. DIETRICH  Dr.-Ing., Bundesanstalt fiir Materialpriifung (BAM), Berlin

SYNOPSIS

Winkler's principle, claiming the interaction problem to be one-dimensional, is capable

of various interpretations. Beside the early interpretation as a bed of independent springs, more
realistic interpretations have been offered by several authors. Thus Winkler's principle is made an
attractive means for the solution of practical problems as well as for parameter studies. In this
paper Vinkler's principle is shown to apply to a wide class of statically loaded structures on half-
space due to the beamlike or rodlike shape of the structure and due to certain features of the
stress-strain-behavior of the material of the half-space, quite common with soils.

INTPODUCTION

Winkler (1867) assumed the reaction of the sub-
soil upon some point of a foundation structure
to depend solely on the settlement of this

point and to be independent of the settlements
of neighboring points. This assumption will be
called Winkler's principle in the sequel.
Additionally Winkler assumed the reaction of the
subsoill to be proportional to settlement. The
two assumptions together may be considerd to
represent an arrangement of independent elastic
springs. (A bed of such springs is sometimres
called a Winkler-material). As Gibson (1967)
showed, a half-space whose modulus of elasticity
increases proportional to the vertical distance
from the surface also justifies the two
assumptions.

Holzl8hner (1969) showed, that the two
assumptions apply to a foundation-slab of
arbitrary shape and loaded arbitrarily, which is
supported by an elastic layer resting on a rigid
base, provided the depth of the elastic layer is
small compared to the dimensions of the slab and
to other length-like parameters of the problem.

Whereas the first and second interpretation of
the two assumptions specify the constitution of
the subsoil, Holzl&hner's interpretation
restricts the geometry of the class of systems
considered. Due to this restriction, Winkler's
principle (the first assumption) is valid. The
second assumption may or may not apply depending
on the constitution of the soft layer and on the
amount of compression its particles suffer.

Holzl6hner then, by introducing geometrical
restrictions, reduces the generally three-
dimensional problem of soil-structure-inter-
action to a one-dimensional problem. This
reminds of similar approaches in continuum
mechanics. A. e. the reduction of the three-
dimensional problem of the determination of the
strains and stresses of a structural member to
a one-dimrmensional problem by invoking the
assurptions of de Saint-Venant's theory of
bending rods.

Zimmermann (1888) argqued already, that the geo-
metrical peculiarities of rails supported by
sleepers justify Winkler's principle. His
arqument is deficient however.

In the sequel, it will be shown, that a suit-
able enlargement of the body of assumptions of
de Saint-Venant's theory reduces the problem of
interaction between rodlike foundation
structures and a material half-space of very
general constitution to a set of two-dimensional
problems, the elements of which are linked by
the rodlike structure, and finally to a one-
dirensional problem. Consequently Winkler's
principle applies.

MOST CONTRIBUTING DOMAIN

Material Half-Spaces

A material half-space is a deformable bocy which
in its initial configuration completely occupies
the space extending from a certain plane to
infinity. A half-space-problem with prescribed
time dependant tractions on some part of its
boundaries is considered properly stated, if

any point of the material half-space under the
action of the prescribed loading process will
undergo but a finite displacement relative to
the infinitely remote boundary. Whether this
requirement can be met depends, once the
constitution of the material half-space is given,
generally on the kind of the applied loading
process. It is a. e. not met by a horogeneous
elastic half-space, which on an infiritely long
strip of its surface is evenly loaded (cf.
Selvadurai, 1979).

The Domain of the Material Half-Space Which
Contributes Most to the Displacement of the
Foundation Structure.,

In the following the material half-space is
supposed to obey the principle of continuity by
virtue of which every particle will (except for
some particles along discontinuities) retain
its neighbors for ever. The boundary at infinite
distance from the surface is supposed to be
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ricid and is taken for frame of reference.
Furtherrore the material is assumed to lack any
property the physical dirension of which
involves the dimension of time (which implies
that it 1s nonviscuous). Consider now a material
surface 2, containinoc the locus S of loadina
and keeping everywhere a finite distance off the
top surface of the material half-space (Fiq. 1).

Load
Strathed Configuration

l G Initial Conflguration
B e et | —_— AR IR T - X

from the surface. w(Pq) 1s obtalned by inte-
grating the strains g parallel to the respec-
tive element of L along L from P4 to the
boundary infinitely below. If these decline fast
enough so that the intecral converges, one will
obtain already an arbitrarily large portion of
w(Py) 1if one carries out the integration -
starting from point P4 - along a finite part

LA

X

S Material
Halfspace
A

Fig. 1 The Domain PRy f'“herein the Portion ow

Assume A to transform into A' during the
loading process whereby every material particle
of A 1is displaced into a point of A'. The
displacements may be obtained by integrating the
strains of the particles below the material
surface 2., Where larqge strains are to be ex-
pected the loading process must be dissected
into finite steps and the intearation must be
carried out for each step. Obviously the strains
at great distance from S must vanish if the
displacerments are to remain finite. When this
necessary condition is fulfilled, then, below
some surface »Iq sufficiently distant from S,
the integration may be carried out at once. For
the rest of this investigation it suffices to
consider the displacements of the particles of
the raterial surface 724 as will becore
apparert. To keep the displacements finite
however it does not suffice that the strains
vanish at all as the depth increases (this has
been demonstrated by the example of the infinite
strip load on a homogeneous elastic half-space).
The strains must vanish fast enough moreover.
This sufficient condition is fulfilled by the
phenomenon of load scattering as long as S is
a finite part of A. If S 1is infinite the
finiteness of displacements cannot be ensured
unless the material half-space possesses special
properties as a. e, a modulus of elasticity
which increases with depth.

Imagine now the material half-space to consist
of material lines L connecting the surface A
to the remote boundary. Every material line
glves rise to a relation of order among its

particles. Consider two particles P,, P, of
the material line L 1. e. Py€ L, P,€L. Let
P4<P, 1f P4 1s situated between P, and P,

where P = BAnL. Let w(Py) denote the displace-
ment of the point Py (where Py = AnL) parallel
to the local element of L and directed away
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of the Deflection

w Originates.

of L. Let mvﬂP1) be that portion, then there
exists a poirt P4, at finite distance from P4
and P4y<Pqq ., SO that aw(P4) originates between
Py and Pyy ., formally:

AN

Pr&Ry AT Py Mgy

w(Py) - w(P,) =aw(P,) (1)
where w(P4q) 1s the settlement of point Pyau.
All the points Pyy constitute a surface Aqq.
This and the surface A4 bound a domain By
wherein o.~times the settlement of the surface
A4 originates. Corresponding to the points Py
there exist points Py, where P<Py , which
together with the surface A , bound a domain
By vherein d-times the settlement of the sur-
face A oriaginates.

If the strains g3
throughout, then

A N

PeL P.eL Del PgL

along L are compressive

P<P.= P<P (2)

For brevity let Vi w(P1d) etc. By definitien

Vg = w-dwW = (1-08) w (3)
W= w.l—dw1= (1-o) W, (4)
By proposition

P< Py w>w, (5)
by (3) A (4) A (5)

Yol > Wq o (6)
ané by proposition

w,>w1_L=b'P“4P1d\ q.e.d. (7)

Hence 1t suffices to investigate the settlement
of the surface A , below which the strains are



small enough so that the integration may be
carried out at once, in order to make sure
whether the settlement of the surface A (or
of the locus of loading S respectively)is
finite.

Without regard of the peculiar value of o the
result of the above investigation ray be

surmed up by saying that - provided certain
conditions of convergence are fulfilled - most
of the settlement of the surface A |is
contributed by a finite domain of the material
half-space. Shortly, this domain will be
referred to as the most contributing domain.
For practical purposes one may choose, say,
o= 90 %.

The shape of By 1s affected by the choice of
the material lines L by which it was defined.
However this ambiguity does not invalidate the
usefulnes of the notion of the domain Bx .

Once the domain Bg and the surface Ay have
been established, let w denote the vertical
displacement in the sequel.

BOUNDARY LAYEP OF QUASIPLANE MOTION

Conditions of Plane Deformation of a Material
Half-Space Under an Evenly Loaded Rigid Beam

Tt is customary to assume the (plastic)
deformation of the subsoil under an evenly
loaded foundation beam to be plane 1f the ratio
of the length 1 of the beam to its breadth b
exceeds a certaln value (see a. e. DIN 4017,
Tab. 2). Conditions will be discussed now that
justify this assumption.
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length 1 1increases. Therefore a beam whose
length is finite but surpasses a certain measure
will induce a nearly Pla&ne deformation of the
material half-space (see Fig. 2),

Boundary Laver of Plane Motion of a Cylindrical
Foundation-Structure

Imagine the evenly loaded rigid foundation-beam
as 1t starts penetrating into the material half-
space. The particles of the half-space adjacent
to the penetrating faces of the structure will,
except for points or lines of discontinuity,
partake in the movement of the rigid faces: they
will have the same velocities as the adjacent
points of the faces. In its immediate vicinity
an evenly loaded beam therefore will always
induce plane deformation of the material half-
space. By use of an appropriate quantity,
measuring the deviation of three-dimensional
motion from plane motion, one may define there-
fore a boundary layer By of plane motion
induced by a ricid cylindrical foundation-
structure, translating normally to its
generatrices. If it happens that the most
contributing domain (introduced in the preced-
ing chapter) does not exceed the boundary layer
of plane motion (except for negligible portions)
then the foundation structure causes plane
motion of the material halfspace.

To continue the investigation the material of
the half-space 1s specified as psammic material.
This 1s a continuous representation of an
assembly of an unlimited number of unbreakable,
ricid, heavy grains, the interparticle forces of
which are governed by Coulomb friction (Dietrich
1977) . Except for 1its mass density psammic
material possesses dimensionless properties only.

L» b

b

Fig. 2
Psammic Half-Space

If the constitution of the material half-space
1s such that evenly distributed loading of its
entire surface produces a finite settlement only
(and therefore a finite depth 2zy4 of the bottor
of the dorain By) as long as the intensity of
the load remains finite, then the settlement due
to any other not evenly distributed loading of
finite intensity will also be finite and the
depths 2o of these problems will also be finite.
For reasons of symmetry the deformation under an
evenly loaded beamr of infinite length will bhe
plane then and the domain By will be bounded
by a cylinder. Due to the principle of continu-
ity invoked, plane behavior and the cylindrical
boundary of Ba will develop gradually as the
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Development of a State of Plane Deformation Under a Slender Foundation-Beam on a

The settlement w(t) of the rigid beam of
lenath 1 and breadth b may now be written as

£0p b, 1, PO, (8)

where ¥ denotes the initial density of the
psammic half-space (PSH), t the present
instant, o the time of beginning of loading
and T the time coordinate. p(t) denotes the
evenly, distributed load at time t , while
p(r)t_.o denotes the loading (i. e. the process
of load from O wuntil t . By dimensional
analysis (8) is transformed as follows

w(t) =

w(t)
b

p(t) 1 D(t))t

7E ' B’ p(t) 'T=0 9)

-?(
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for brevity this is rewritter as

E‘b'y = q’(‘y_gl %:% (10)
where w and p denote the present values of
these varlables and d” denotes the dirension-
less process of load. ?s has been shovwr elsevhere
(Dietrich 1979) a PSH settles by a finite amount
only if the intensity p/y of the arbitrarily
distributed load rermains finite. Therefore the
lirit 1lim¢,,,., obtainable from Eas (9) and (10)
exists. Pccordine to what has been said above,
there exists a value 1lg then also, such that

a bear whose lenath 1>1g causes a motion of
the PSE the deviation of which frorm plane motion
- appropriately defined - will remain below a
prescrited bound. But Ec (10), respectively the
lirit ¢,,,, may be interpreted differently yet.
Instead of increasino 1 , one may dirinish b
and corpensete this variation by a correspond-
ino variation of p in the first arcument. There-
fore a stort bear will cause & rearly plare roticn
of the PSH if it is narrow enough. "hether plane
rotien rrevails will depend then - for fixed
values of p/(yb) andé? - not on the absolute
size of the foundation structure but on its shape
only, i. e. on the ratio 1/b. Cbserve, that
this result recuired the existence of a peculiar
property of the raterial half-space, having the
physical dirensicn KL~V , vherev>2 (ir case

of PFHy = 3). Let zgr denote the depth of the
bottor of the dorain By, the boundary layer

of quasiplane motion, pertainino to the beam
considered. Obvicusly

l/b»® 3 zq/b -+ (11)

i.e.: as the length 1 increases the regime of
plane rotion will take over the entire half-space.
In case of a PTH one ray vrite

Zx

S -
T - W(YE, b'éP)
Since 1lim¥13w of Ea (10) exists withk a PSE,
lir¥i»w of Eqg (12) exists also, i.e.

1/b>w= z,/b = const (13)

Comparinc (11) and (13) one notices that any
dorain Bg. - regardless of the value of a. -
will stay within the houndary layer of plane
motion Br , if only the beam will be slender
enoucah.

QURSIPLANE MOTION OF MATEPIFL HRLF-SPACE

Quasiplane Motion with Pigid Foundation-

Structures

rigid fourdation bear on a newly
PSH being unevenly loaded as depicted
The load variles accordina to

Consider a
sedirented
in Fig. 3.

pix,t): = (1 + %5) Pyt (14)

The resultant load P(t) =,fti§; p(x,t)dx acts
at the distance 1/6 from the centerroint
of the beam. Its intensity increases proportional
to time t startinc at t = 0. The beam will
translate as the evenly loaded bear but also
rotate. Consider now a set of rigid hears of
equal breadths b but different lengths 1' and
arrance them in order of increasing 1', fromr

1' =1 wuntil 1' = o0 . Let their loads be

106

Resultant Load

; f '
‘(,w|||||’|(| ’ll'H 2<p1tl
‘ L

o~

C ) R R %

r'{,
bt

Fig.3 Unevenly Loaded Pigid Foundation-Beam

on Material Half-Space

denoted by p' and let ther vary according to

O+ %’é)mt (15)

All beams of the series carry the same average
load, namely pyt units per unit of area of the
hase of each beam. Therefore all bheams will
exhibit ahout equal settlements w(gl',t) at
equal abscissas E = x/1' and equal times t.
Each resultant load possesses the same excentricity
of 1/6 of the beams length. All beams of the
serles will settle unevenly therefore. The slope
Mt) i dwix,t)/3t, constant along each beam,
will decrease, however, as 1' increases. There-
fore, as 1' increases, the rotions of the
psammic particles at cross-section x = ¥1' will
differ ever less from the motions of the particles
at cross-sections x + dx and x - dx. Moreover,
the motiorn of the PSH at =gl' will differ
ever less frorm the plane motion of the PSIi under
an everly loaded bear of egual dimensions. At an
other cross-section X = El' a plane state of
deformation will develop also but different from
the one at x =§1l', This type of motion of the
PSH under a slender, rigid, excentrically loaded
beam will he called quasiplane.

p'(xpt): =

Ouasiplane Motion with Flexible Foundation
Structures

The locally plane states of deformation of the
quasiplane regime under a slender, rigid excentric-
ally loaded beam are related in an especially
simple way due to the rectilinear line of
deflection of the riqid beam. But quasiplane
motion may occur also under a flexible foundation
- beam exhibiting a oyrvilinear line of deflec-
tion. The motion will be exactly quasiplane, if
the distortions in sections normal to the beam's
axis will vanish compared to the distortions in
sections parallel to the beam's axis and if the
influence of both tips of the beam will vanish.
This is secured by the following conditions

Ddwix,t)

2 X = 0 (16)



?g%ﬁ)/w%ﬁ)éo (17)
2
ba W(xét) > 0 (18)
x
b/1 >0 (19)

which must be fullfilled at any point x of
the beam's axis and at any time t. Condition
(16) is well known as a requirement for the
application of de Saint-Venant's theory of
beams. The denominator of (17) characterizes
the locally plane state of distortion . The
expression (18) represents the ratio of the
beam's breadth to the radius of curvature of
the elastic line of the beam. A foundation-
structure complying to the four conditions
(16) to (19) will be called “bending-rod-like
structure in material halfspace". This notion
is useful because quasiplane motion is at hand
already when the expressions (16) to (19)
assume values current in enaineerinag practice
but still far from zero. The usefulness of de
Saint-Venant's bear-theory is due to similar
reasons.

The four conditions (16) to (19) cannot be
fullfilled@ simultaneously in every kind of
material half-space. Consequently quasiplane
motion requires a certain specification of
material properties of the material half-space
as has been pointed out for the elastic half-
space and for the PEI. Such properties are
quite common with soils.,

WINKLER'S PRINCIPLE AND QUASIPLANE MOTION OF
MATERIAL HALF-SPICE

The behavior of a foundation-beam and of the
supporting half-space may be determined not
only by the loading process but also by the
process of the elastic line. The latter determ-
ines the reactions of the material half-space,
the bending moments of the beam and finally the
corresponding load (more precisely the
processes of bending moments and loads). In
quasiplane motion a particle of the material
half-space exchanges energy but with particles
within its local plane of deformation. There-
fore 1its state of stress is determined
exclusively by the process of the displacement
w of the beam's cross-section coincident with
that plane. This is true especially of those
particles adjacent to the bear and trans-
mitting the reaction q of the material half-
space unto the penetrating beam,In case of PSH:

glx,t) = £@b,wx, DL _ (20)
Eq (20) expresses Winkler's principle. Indeed,
if the foundation-structure may be considered
as bending-rod-like structure in a material
half-space the stiffness of which increases
with depth (as a. e. of a PSH) then Winkler's
principle applies, i. e.: The reaction of the
half-space unto some point of the structure
depends solely on the displacement of this
point and is independant of the displacements
of neighboring points.
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BENDING-ROD-LIKE STRUCTURES IN MATERIAL HALF-
SPACE

Unlimited Distortion of Half-Space

Under the heading of bending-rod-like structures
in material half-space come many of the most
common foundation-structures as foundation-
beams, strip-foundations, single piles vertical
and inclined, piles in croups, grids and others.

The conditions (16) to (19) place no limitation
on the distortions within the planes of
deformation making up the quasiplane deforra-
tion of a material half-space. Hence Egs (16)
to (19) may be emrployed along with a theory of
plasticity. They justify a. e. the analysis of
interaction between a laterally loaded rigid
pile and a Coulomb-half-space presented by
Brinch-Hansen (1961) and similar approaces by
other authors. The practical value of such an
analysis seems limited however because the
stiffness of ordinary construction-materials
is so low and the strength of soils is so high
as to forbid the simultaneous fulfillment of
the failure-condition of the material half-
space and the conditions (16) to (19). It may
be possible to meet those conditions sirul-
taneously in a material of very low bulk
density. In this respect the fact is of
importance that only the buoyant weight enters
the analysis of quasistatic problers.

Bending-Pod-Like Structures in Material
Half-Space with Small Deformations

mo the conditions (16), (17), (18) and (19)

a further condition will be added now,
requiring the distortions of the material half-
space to be small. As has been stated before,
the intensity of the quasiplane state of
distortion of the material half-space around a
bending-rod-like structure is characterized by
the denominator of expression (17). Hence the
additional ccndition reads:

wix,t)
b

>0 (21)

Condition (1€) may be recovered as consequerce
of Eas (17) and (21). (Fo other condition than
(16) may be eliminated hetwveen (16), (17), (18),
(19) and (21).) Hence, there are again not more
than four independant conditions, namely

Egqs (17), (18), (19) and (21). They require not
only small distortions but small deformations
all over the half-space. Therefore these
conditions represent the type of structure
mentioned in the heading of this chapter.

on account of (21) and with regard to the
hardening lav of psammic material (Dietrich
1977a) Winkler's principle may be transformed
from (21) into the following incremental form
(Dietrich 1979):

2
Aq = yb(&)  x(x,t) (22)

where 7 denotes the minimal exponent of
hardening of psammic material (®<1). In case
of an elastic half-space Eq (22) is replaced
by a differential equation.

Self-Similar Bending-Pod-Like Structures in
Psammic Half-Space

In case of self-similar structures in PSH the
methods of an extended dimensional analysis
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tocether with considerations of topology and
measure theory (Dietrich 1979) vield finite
expressions for cquantities of interest in the
form of power laws. Consider a. e, an elastic
straiaht beam of infinite length resting on a
PSH under the action of a cyclically wandering,
distributed load as depicted in Fig. 4.

Fia. 4 Modellino of a Railrocad-Train by a
Wandering Distributed Load on a
Flexible Beam Restina on a Psammic

Half-Space

This system was developed for the modelling of
settlerents due to railroad-traffic (Dletrich
1979). If the length c¢ of the trains is made
infinitely short (i. e. the distributed load

p 1s replaced by a concentrated load P) or 1if
the trains are made sc lonag that no particle in
the most contributing domain can notice the
front end and rear end of a train simultaneously,
and if the distance hetween consecutive trains
is large, the system will become self-similar.
In case of the short train one obtains

4
1 + 3
v = B(z5T)

where b, ¥ ,% have been explained already.

lg = %/57y " denctes a kind of elastic length.

s = EI/b denotes the flexural riaidity per unit
of breadth of beam. n counts the trairs that
have passed over the beam, w denotes the
settlement at a fixed instance of the load
cycle. A. e. the settlement of a certain cross-
section of the bear when a concentrated load
passes that section or a. e. when two
consecutive loads have equal distances from
that section.

q(n) (23)

Corresponding formulas exhibiting a power of
the load's intensity with an exponent rational
in 7 may be obtained for other bending-rod-
like structures in PSH with small deformations.
Elsewhere (Dietrich 1977 b) experirental data
have been published verifyina the power-law-
form for a self-similar type of laterally
loaded flexible pile,

CONCLUSIONS

In this paper VWinkler's principle, claiming the
interaction problem to be one-dimensional, is
shown to apply to a wide class of statically
loaded structures on half space due to the
bearlike or rodlike shape of the structure and
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due to certain features of the stress-strain-
behavior of the material of the half-space, quite
common with soils. Foundation members complying
to the requirements of elementary beam theory
and beilng of narrow width (comrpared to length
or to radii of bending curvature respectively)
cause the adjacent soll to move in quasiplane
fashion. If the deformations of the soil
particles, responsible for the deflections of
the foundation structure, mainly occur within
this boundary layer of gquasiplane motion, then
the three-dimensional problem of soil-structure-
interaction degenerates into a set of two-
dimensional problems, the elements of which are
linked by the elastic foundation structure.
Consequently, Winkler's principle applies.

The reduction of three-dimensional problems to
two dimensions or one dimension respectively is
of immediate profit tO analytical, numerical
and experimental investigators.

The 1nvestiagations upon which this paper is

based have been sponsored by the Federal Minister
of Research and Technology (BMFT) of the Federal

Republic of Germany under contract No.TV 78172 C
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