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On the Validity of Winkler's Principle

Sur la Validité de Principe de Winkler

Th. DIETRICH Dr.- Ing., Bundesanstalt  für M aterialprüfung (BAM ), Berlin

SYNOPSIS Winkler's principle, claiming the interaction problem to be one-dimensional, is capable 
of various interpretations. Beside the early interpretation as a bed of independent springs, more 
realistic interpretations have been offered by several authors. Thus Winkler's principle is made an 
attractive means for the solution of practical problems as well as for parameter studies. In this 
paper Winkler's principle is shown to apply to a wide class of statically loaded structures on half­
space due to the beamlike or rodlike shape of the structure and due to certain features of the 
stress-strain-behavior of the material of the half-space, quite common with soils.

INTPODUCTION

Winkler (1867) assumed the reaction of the sub­
soil upon some point of a foundation structure 
to depend solely on the settlement of this 
point and to be independent of the settlements 
of neighboring points. This assumption will be 
called Winkler's principle in the sequel. 
Additionally Winkler assumed the reaction of the 
subsoil to be proportional to settlement. The 
two assumptions toqether may be considerd to 
represent an arrangement of independent elastic 
springs, (f bed of such springs is sometimes 
called a Winkler-material). As Gibson (1967) 
showed, a half-space whose modulus of elasticity 
increases proportional to the vertical distance 
from the surface also justifies the two 
assumptions.

HolzlChner (1969) showed, that the two 
assumptions apply to a foundation-slab of 
arbitrary shape and loaded arbitrarily, which is 
supported by an elastic layer resting on a rigid 
base, provided the depth of the elastic layer is 
small compared to the dimensions of the slab and 
to other length-like parameters of the problem.

Whereas the first and second interpretation of 
the two assumptions specify the constitution of 
the subsoil, HolzlShner's interpretation 
restricts the geometry of the class of systems 
considered. Due to this restriction, Winkler's 
principle (the first assumption) is valid. The 
second assumption may or may not apply depending 
on the constitution of the soft layer and on the 
amount of compression its particles suffer.

Holzlohner then, by introducing geometrical 
restrictions, reduces the generally three- 
dimensional problem of soil-structure-inter- 
action to a one-dimensional problem. This 
reminds of similar approaches in continuum 
mechanics. A. e. the reduction of the three- 
dimensional problem of the determination of the 
strains and stresses of a structural member to 
a one-dimensional problem by invoking the 
assumptions of de Saint-Venant's theory of 
bending rods.

Zimmermann (1888) argued already, that the geo­
metrical peculiarities of rails supported by 
sleepers justify Winkler's principle. His 
argument is deficient however.

In the sequel, it will be shown, that a suit­
able enlargement of the body of assumptions of 
de Saint-Venant's theory reduces the problem of 
interaction between rodlike foundation 
structures and a material half-space of very 
general constitution to a set of two-dimensional 
problems, the elements of which are linked by 
the rodlike structure, and finally to a one­
dimensional problem. Consequently Winkler's 
principle applies.

MOST CONTPIBUTING DOMAIN 

Material Half-Spaces

A material half-space is a deformable body which 
in its initial configuration completely occupies 
the space extending from a certain plane to 
infinity. A half-space-problem with prescribed 
time dependant tractions on some part of its 
boundaries is considered properly stated, if 
any point of the material half-space under the 
action of the prescribed loading process will 
undergo but a finite displacement relative to 
the infinitely remote boundary. Whether this 
requirement can be met depends, once the 
constitution of the material half-space is given, 
generally on the kind of the applied loading 
process. It is a. e. not met by a homogeneous 
elastic half-space, which on an infinitely long 
strip of its surface is evenly loaded (cf. 
Selvadurai, 1979).

The Domain of the Material Half-Space Which 
Contributes Most to the Displacement of the 
Foundation Structure.

In the following the material half-space is 
supposed to obey the principle of continuity by 
virtue of which every particle will (except for 
some particles along discontinuities) retain 
its neighbors for ever. The boundary at infinite 
distance from the surface is supposed to be
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rirrid and is taken for frame of reference. 
Furthermore the material is assumed to lack any 
property the physical dimension of which 
Involves the dimension of time (which implies 
that it is nonviscuous). Consider now a material 
surface A, containino the locus S of loadina 
and keeping everywhere a finite distance off the 
top surface of the material half-space (Fig. 1).

from the surface. w(P.j) is obtained by inte­
grating the strains parallel to the respec­
tive element of L along L from P-| to the 
boundary infinitely below. If these decline fast 
enough so that the integral converges, one will 
obtain already an arbitrarily large portion of 
w(P1 ) if one carries out the Integration - 
starting from point P^ - along a finite part

Fig. 1 The Domain Wherein the Portion ocw of the Deflection w Originates.

S t r a i n e d  C o n f t ' g u r d t c o n

L o a d
I n i t i a l  C o n f i g u r a t i o n .

Assume A to transform into A' during the 
loading process whereby every material particle 
of A is displaced into a point of A'. The 
displacements may be obtained by integrating the 
strains of the particles below the material 
surface A. where large strains are to be ex­
pected the loading process must be dissected 
into finite steps and the intearation must be 
carried out for each step. Obviously the strains 
at great distance from S must vanish if the 
displacements are to remain finite. When this 
necessary condition is fulfilled, then, below 
some surface A-i sufficiently distant from S, 
the integration may be carried out at once. For 
the rest of this investigation it suffices to 
consider the displacements of the particles of 
the material surface £1 as will become 
apparent. To keep the displacements finite 
however it does not suffice that the strains 
vanish at all as the depth increases (this has 
been demonstrated by the example of the Infinite 
strip load on a homogeneous elastic half-space). 
The strains must vanish fast enough moreover.
This sufficient condition is fulfilled by the 
phenomenon of load scattering as long as S is 
a finite part of A. If S is infinite the 
finiteness of displacements cannot be ensured 
unless the material half-space possesses special 
properties as a. e. a modulus of elasticity 
which increases with depth.

Imagine now the material half-space to consist 
of material lines L connecting the surface A 
to the remote boundary. Every material line 
gives rise to a relation of order among its 
particles. Consider two particles P̂  , P^ of 
the material line L i. e. P1 e L , P^eL. Let 
P.(-<P2.. if is situated between Pi and P,
where P = SnL. Let w(P1 ) denote the displace­
ment of the point P! (where P̂  = L) parallel 
to the local element of L and directed away

of L. Let olvj(P1) be that portion, then there 
exists a point P 1ot at finite distance from 
and P^P^rt. / so that a.w(P1 ) originates between 
P̂  and Plot. , formally:

P ^ A 1 cK<1 P1̂ A i otw(P1) “ w<P1d) =c*w(P1) (1)

where w(P1ol) is the settlement of point P1ol_. 
All the points P ^  constitute a surface Ai* 
This and the surface Ai bound a domain B1ct 
wherein oL-times the settlement of the surface 
Aoriginates. Corresponding to the points P 
there exist points P,*., where P-<Pd , which 
together with the surface A , bound a domain 
B,* . wherein cA-times the settlement of the sur­
face A originates.

101

If the strains along L are compressive
throughout, then

A  A  V  V
PeL P ^ L  J f L  P l t L.

P-fP. P ^ P lot (2)

For brevity let w 1it= v(P1o() etc. By definition1ct

V’,* = w - (¿W = (1-01) w 

v»u = W.J- otw.j= ( 1 —oO W1 

Ey proposition 

P-< P ^  w > w1 

by (3) A (4) A (5) 

Wo<>W1*.

and by proposition

P 1* q - e - d -

(3)

(4)

(5)

(6) 

(7)

Hence it suffices to investigate the settlement 
of the surface A , below which the strains are
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small enough so that the integration may be 
carried out at once, in order to make sure 
V7hether the settlement of the surface A (or 
of the locus of loading S respectively)is 
finite.

Without regard of the peculiar value of ol the 
result of the above investigation may be 
summed up by saying that - provided certain 
conditions of convergence are fulfilled - most 
of the settlement of the surface A is 
contributed by a finite domain of the material 
half-space. Shortly, this domain will be 
referred to as the most contributing domain.
For practical purposes one may choose, say,
OL = 90 %.

The shape of is affected by the choice of
the material lines L by which it was defined. 
However this ambiguity does not invalidate the 
usefulnes of the notion of the domain Be* .

Once the domain B<i and the surface A* have 
been established, let w denote the vertical 
displacement in the sequel.

BOUNDARY LAYER OF QUAEIPLANE MOTION

Conditions of Plane Deformation of a Material 
Half-Space Under an Evenly Loaded Rigid Beam

It is customary to assume the (plastic) 
deformation of the subsoil under an evenly 
loaded foundation beam to be plane if the ratio 
of the length 1 Of the beam to its breadth b 
exceeds a certain value (see a. e. DIN 4017, 
Tab. 2). Conditions will be discussed now that 
justify this assumption.

length 1 increases. Therefore a beam whose 
length is finite but surpasses a certain measure 
will induce a nearly plane deformation of the 
material half-space (see Fig. 2).

Boundary Layer of Plane Motion of a Cylindrical 
Foundatlon-Structure

Imagine the evenly loaded rigid foundation-beam 
as it starts penetrating into the material half­
space. The particles of the half-space adjacent 
to the penetrating faces of the structure will, 
except for points or lines of discontinuity, 
partake in the movement of the rigid faces: they 
will have the same velocities as the adjacent 
points of the faces. In its immediate vicinity 
an evenly loaded beam therefore will always 
induce plane deformation of the material half­
space. By use of an appropriate quantity, 
measuring the deviation of three-dimensional 
motion from plane motion, one may define there­
fore a boundary layer B^ of plane motion 
induced by a rigid cylindrical foundation- 
structure, translating normally to its 
generatrices. If it happens that the most 
contributing domain (introduced in the preced­
ing chapter) does not exceed the boundary layer 
of plane motion (except for negligible portions) 
then the foundation structure causes plane 
motion of the material halfspace.

To continue the investigation the material of 
the half-space is specified as psammic material. 
This is a continuous representation of an 
assembly of an unlimited number of unbreakable, 
rigid, heavy grains, the interparticle forces of 
which are governed by Coulomb friction (Dietrich 
1977). Except for its mass density psammic 
.material possesses dimensionless properties only.

Fig. 2 Development of a State of Plane Deformation Under a Slender Foundation-Beam on a 
Psammic Half-Space

If the constitution of the material half-space 
is such that evenly distributed loading of its 
entire surface produces a finite settlement only 
(and therefore a finite depth of the bottom
of the domain B&) as long as the intensity of 
the load remains finite, then the settlement due 
to any other not evenly distributed loading of 
finite intensity will also be finite and the 
depths Zol of these problems will also be finite. 
For reasons of symmetry the deformation under an 
evenly loaded beam of infinite length will be 
plane then and the domain Boi. will be bounded 
by a cylinder. Due to the principle of continu­
ity invoked, plane behavior and the cylindrical 
boundary of Bn will develop gradually as the

The settlement w(t) of the rigid beam of 
length 1 and breadth b may now be written as

w(t) = f( y, b, 1, p(f))£,0 (8)
where y denotes the initial density of the 
psammic half-space (PSH), t the present 
instant, o the time of beginning of loading 
and Z  the time coordinate, p (t) denotes the 
evenly, distributed load at time t , while 
p(r)i=0 denotes the loading (i. e. the process 
of load from 0 until t . By dimensional 
analysis (8) is transformed as follows

w(t) _ 
b

(t) 1_ p(T) jt (9)
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for brevity this is rewritten as

(10)

where w and p denote the present values of 
these variables and d P denotes the dimension- 
less process of load. As has been shown elsewhere 
(Dietrich 1979) a PSH settles by a finite amount 
only if the intensity p / f of the arbitrarily 
distributed load regains finite. Therefore the 
H r  it lir obtainable from Eqs (9) and (10)
exists, According to what has been said above, 
there exists a value It then also, such that 
a bearr whose length 1 > 1^ causes a motion of 
the PSK the deviation of which from plane irotion
- appropriately defined - will remain below a 
prescribed bound. But Eo (10) , respectively the 
limit may be interpreted differently yet.
Instead of increasing 1 , one may diminish b 
and compensate this variation by a correspond­
ing variation of p in the first argument. There­
fore a short bear will cause a rearly plare motion 
of the PEH if it is narrow enough, "hether plane 
motion prevails will depend then - for fixed 
values of p/(fb) and ¿P - not on the absolute 
size of the foundation structure but on its shape 
only, i. e. on the ratio 1/b. Observe, that 
this result required the existence of a peculiar 
property of the material half-space, having the 
physical dimension KL"'’ , where v > 2  (in case 
of’pfH v = 3) . Let 7. jc denote the depth of the 
bottom of the domain B-*, the boundary layer 
of quasiplane motion, pertainina to the beam 
considered. Obviously

l/b-»a° ̂  2if/b °°

i.e.: as the length 1 increases the regime of 
plane motion will take over the entire half-space. 
Tn case of a PSH one may write

ET = ' ^ (7 b '

Since liny!-*™ of Eq (10) exists with a PSH, 
lim 'f'x-»® of EtI (12) exists also, i.e.

1/b^cD Zg(/b = const (13)

Comparing (11) and (13) one notices that any 
domain Bet - regardless of the value of oL - 
will stay within the boundary layer of plane 
motion Btc , if only the beam will be slender 
enough.

QUASIPLANE MOTION OF MA.TEPIAL HALF-SPACE

Quasiplane Motion with Piqid Foundatlon- 
Structures

Consider a rigid foundation beam on a newly 
sedimented PSH being unevenly loaded as depicted 
in Fig. 3. The load varies according to

p(x,t) : (1 + I 21) P , t (14)

The resultant load P(t) = /  / 2 p(x,t)dx acts 
at the distance 1/6 from. the centerpoint
of the beam. Its intensity increases proportional 
to time t starting at t = 0. The beam will 
translate as the evenly loaded beam but also 
rotate. Consider now a set of rigid beams of 
equal breadths b but different lengths I1 and 
arrange them in order of increasing 1', from 
1' = 1 until 1' = co . Let their loads be

Fig.3 Unevenly Loaded Pigid Foundation-Beam 
on Material Half-Space

denoted by p' and let them vary according to

p' (x,t) : = (1 + fi)p.,t (15)

All beams of the series carry the same average 
load, nam.ely p11 units per unit of area of the 
base of each beam. Therefore all beams will 
exhibit about equal settlements w(tl',t) at 
equal abscissas 5 = x/1' and equal times t.
Each resultant load possesses the same excentricity 
of 1/6 of the beams length. All beams of the 
series will settle unevenly therefore. The slope 

t) :=» iw(x,t)/at, constant along each beam, 
will decrease, however, as 1' increases. There­
fore, as 1' increases, the motions of the 
psammic particles at cross-section x = £ 1' will 
differ ever less from the motions of the particles 
at cross-sections x + dx and x - dx. Moreover, 
the motion of the PSH at x ■* $ 1' will differ 
ever less from the plane motion of the PSII under 
an evenly loaded beam_of equal dimensions. A.t an 
other cross-section x = ^1' a plane state of 
deformation will develop also but different from 
the one at x = ̂ 1'. This type of motion of the 
PSH under a slender, rigid, excentrically loaded 
beam will be called quasiplane.

Quaslplane Motion with Flexible Foundation 
Structures

The locally plane states of deformation of the 
quasi plane regime under a slender, rigid excentric­
ally loaded beam are related in an especially 
simple way due to the rectilinear line of 
deflection of the rigid beam. But quasiplane 
motion may occur also under a flexible foundation
- beam exhibiting a curvilinear line of deflec­
tion. The motion will be exactly quasiplane, if 
the distortions in sections normal to the beam's 
axis will vanish compared to the distortions in 
sections parallel to the beam's axis and if the 
influence of both tips of the beam will vanish.
This is secured by the following conditions

~3w(x,t) 
'Z x (16)
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?W(x,t) . w(x,t) _
? x '  b "*0

b3 w(x,t)

b/1 -> 0

(17)

(18) 

(19)

which must be fullfilled at any point x of 
the beam's axis and at any time t. Condition 
(16) is well known as a requirement for the 
application of de Saint-Venant's theory of 
beams. The denominator of (17) characterizes 
the locally plane state of distortion . The 
expression (18) represents the ratio of the 
beam's breadth to the radius of curvature of 
the elastic line of the beam. A foundation- 
structure complying to the four conditions 
(16) to (19) will be called "bending-rod-like 
structure in material halfcspace". This notion 
is useful because quasiplane motion is at hand 
already when the expressions (16) to (19) 
assume values current in engineering practice 
but still far from zero. The usefulness of de 
Saint-Venant' s beam.-theory is due to similar 
reasons.

The four conditions (16) to (19) cannot be 
fullfilled simultaneously in every kind of 
material half-space. Consequently quasiplane 
motion requires a certain specification of 
material properties of the material half-space 
as has been pointed out for the elastic half­
space and for the PCI!. Such properties are 
quite common with soils.

WINKLER'S PRINCIPLE AND QUASIPLANE MOTION OF 
MATERIAL HALF-SPACE

The behavior of a foundation-beam and of the 
supporting half-space may be determined not 
only by the loading process but also by the 
process of the elastic line. The latter determ­
ines the reactions of the material half-space, 
the bending moments of the beam and finally the 
corresponding load (more precisely the 
processes of bending moments and loads). In 
quasiplane motion a particle of the material 
half-space exchanges energy but with particles 
within its local plane of deformation. There­
fore its state of stress is determined 
exclusively by the process of the displacement 
w of the beam's cross-section coincident with 
that plane. This is true especially of those 
particles adjacent to the beam and trans­
mitting the reaction q of the material half­
space unto the penetrating beam.ln case of PSH:

q(x,t) = f (r,b,w(x,r) )^ _ 0
(20)

Eq (20) expresses Winkler's principle. Indeed, 
if the foundation-structure may be considered 
as bending-rod-like structure in a material 
half-space the stiffness of which increases 
with depth (as a. e. of a PSH) then Winkler's 
principle applies, i. e.: The reaction of the 
half-space unto some point of the structure 
depends solely on the displacement of this 
point and is independant of the displacements 
of neighboring points.

BENDING-ROD-LIKE STRUCTURES IN MATERIAL HALF­
SPACE

Unlimited Distortion of Half-Space

Under the heading of bending-rod-like structures 
in material half-space come many of the most 
common foundation-structures as foundation- 
beams, strip-foundations, single piles vertical 
and inclined, piles in groups, grids and others.

The conditions (16) to (19) place no limitation 
on the distortions within the planes of 
deformation making up the quasiplane deforma­
tion of a material half-space. Hence Eqs (16) 
to (19) may be employed along with a theory of 
plasticity. They justify a. e. the analysis of 
interaction between a laterally loaded rigid 
pile and a Coulomb-half-space presented by 
Brinch-Hansen (1961) and similar approaces by 
other authors. The practical value of such an 
analysis seems limited however because the 
stiffness of ordinary construction-materials 
is so low and the strength of soils is so high 
as to forbid the simultaneous fulfillment of 
the failure-condition of the material half­
space and the conditions (16) to (19). It may 
be possible to meet those conditions simul­
taneously in a material of very low bulk 
density. In this respect the fact is of 
importance that only the buoyant weight enters 
the analysis of quasistatic problems.

Bendlnq-Pod-Like Structures in Material 
Half-Space with Small Deformations

To the conditions (16), (17), (18) and (19) 
a further condition will be added now, 
requiring the distortions of the material half­
space to be small. As has been stated before, 
the intensity of the quasiplane state of 
distortion of the material half-space around a 
bending-rod-like structure is characterized by 
the denominator of expression (17). Hence the 
additional condition reads:

w(x,t) (2i :

Condition (16) may be recovered as consequence 
of Eqs (17) and (21). (No other condition than
(16) may be eliminated between (16), (17), (18),
(19) and (21).) Hence, there are again not more 
than four independant conditions, namely 
Eqs (17), (18), (19) and (21). They require not 
only small distortions but small deformations 
all over the half-space. Therefore these 
conditions represent the type of structure 
mentioned in the heading of this chapter.

On account of (21) and with regard to the 
hardening law of psammic material (Dietrich 
1977a) Winkler's principle may be transformed 
from (21) into the following incremental form 
(Dietrich 1979) :

A q  = ) k (x,t) (22)

where tc denotes the minimal exponent of 
hardening of psammic material (36<1). In case 
of an elastic half-space Eq (22) is replaced 
by a differential equation.

Self-Similar Bendlnq-Pod-Like Structures in 
Psammic Half-Space

In case of self-similar structures in PSH the 
methods of an extended dimensional analysis
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tooether with considerations cf topology and 
measure theory (Dietrich 1979) yield finite 
expressions for quantities of interest in the 
form of power laws. Consider a. e. an elastic 
straiaht beam of infinite length resting on a 
PSK under the action of a cyclically wandering, 
distributed load as depicted in Fig. 4.

Fig. 4 Modelling of a Railroad-Train by a 
Wandering Distributed Load on a 
Flexible Beam Resting on a Psammic 
Half-Space

This system was developed for the modelling of 
settlements due to railroad-traffic (Dietrich 
1979). If the length c of the trains is made 
infinitely short (i. e. the distributed load 
p is replaced by a concentrated load P) or if 
the trains are made so Iona that no particle in 
the most contributing domain can notice the 
front end and rear end of a train simultaneously, 
and if the distance between consecutive trains 
is large, the system v.’ill become self-similar.
In case of the short train one obtains

4
/  p  +  ^ Jt

w -  fc( ^ )  <f (n) (23 )

where b, y , )t, have been explained, already.
I;; = % [ s / y  1 denotes a kind of elastic length, 
s = El/b denotes the flexural rigidity per unit 
of breadth of beam. n counts the trains that 
have passed over the beam, w denotes the 
settlement at a fixed instance of the load 
cycle. A. e. the settlement of a certain cross- 
section of the beam when a concentrated load 
passes that section or a. e. when two 
consecutive loads have equal distances from 
that section.

Corresponding formulas exhibiting a power of 
the load's intensity with an exponent rational 
in may be obtained for other bendlng-rod-
like structures in PSH with small deformations. 
Elsewhere (Dietrich 1977 b) experimental data 
have been published verifying the power-law- 
form for a self-similar type of laterally 
loaded flexible pile.

due to certain features of the stress-strain- 
behavior of the material of the half-space, quite 
common with soils. Foundation members complying 
to the requirements of elementary beam theory 
and being of narrow width (compared to length 
or to radii of bending curvature respectively) 
cause the adjacent soil to move in quasiplane 
fashion. If the deformations of the soil 
particles, responsible for the deflections of 
the foundation structure, mainly occur within 
this boundary layer of quasiplane motion, then 
the three-dimensional problem of soil-structure- 
interaction degenerates into a set of two- 
dimensional problems, the elements of which are 
linked by the elastic foundation structure. 
Consequently, VTinkler's principle applies.

The reduction of three-dimensional problems to 
two dimensions or one dimension respectively is 
of immediate profit to analytical, numerical 
and experimental investigators.

The investigations upon which this paper is 
based have been sponsored by the Federal Minister 
of Research and Technology (BMFT) of the Federal 
Republic of Germany under contract No.TV 78172 C
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CONCLUSIONS

In this paper Winkler's principle, claiming the 
interaction problem to be one-dimensional, is 
shown to apply to a wide class of statically 
loaded structures on half space due to the 
beamlike or rodlike shape of the structure and
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