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Consolidation due to Lateral Loading of a Pile

Consolidation avec une Force Latérale sur un Pieu

J.P. CARTER Lecturer in Civil Engineering, University of Queensland, Australia

J.R. BOOKER Reader in Civil Engineering, University of Sydney, New South Wales, Australia

SYNOPSIS The response of a single pile embedded in a clay soil and subjected to a lateral load
may be time dependent. This paper outlines a method of analysis for the time dependent response of 
such piles due to consolidation of the surrounding elastic medium.

INTRODUCTION

The problem of the response of a single, 
cylindrical pile embedded in a homogeneous 
elastic soil and subjected to a lateral load 
has received the attention of several 
investigators (e.g. Poulos, 1971; Randolph, 
1977). These studies looked at the load- 
displacement behaviour of the pile in either 
the short or the long term. However, if these 
piles are embedded in a saturated clay, then 
upon loading the instantaneous deformation will 
cause excess pore pressures to develop within 
the surrounding soil. These excess pore 
pressures will dissipate with time after the 
application of load, and as this occurs the 
soil around the pile will consolidate (some of 
it may swell). Further deflection of the pile 
will be observed. It is the aim of this paper 
to outline a method of analysis which will 
allow predictions to be made of the time 
dependent lateral response of the pile due to 
consolidation within the surrounding soil.

ANALYSIS

A cylindrical coordinate system (r,6,z) is 
adopted, with the z axis corresponding to the 
axis of the pile. The symbol t is used to 
represent time.

Fourier Representation

The analysis is based on the assumption that 
field quantities such as displacement (ur»ug<uz) 
and excess pore pressure (p) can be expressed 
in the following form

ur(r,6,z,t) = U^n  ̂ (r,z,t)c o s (n0+en)

(1 )

u. (r, 0 , z, t) = (r,z,t)sin(n0+e )o o  n

u (r,8,z,t) = U^n  ̂(r,z,t)cos(n0+En)

p(r,0,z,t) = P (r, z, t) cos (n0 + en)

where n = 0,1,2,.... and e is used to 
establish a reference poin6 for the measurement 
of 0.

Superposition

Solutions of type (1) can be superimposed to 
obtain more general solutions of the form 

N
u (r,6,z,t)=U^o)+ E Û .n^cos(n0+en) , etc (2) 

n=l

The solution to any general problem thus redycçs

Jr

aduces
to one of finding the Fourier coefficients U^n^, 
etc.

For a pile subjected to pure axial load it is 
necessary to find only the first of these terms,
i.e. u'°' etc (n=0); for a pile subjected to 
pure literal load it is necessary to find only 
the second of these terms, u^1  ̂ etc (n=l).

Constraints at r = 0

At the centreline of the pile, r=0, all field 
quantities must be single valued. By consider­
ing the cartesian components of displacement, 
it may be shown that certain conditions need to 
be met. These conditions are -

For

For

n = 0 v lo) = u<°> = 0 (3)

n = 1 u (1)
r

+ ue(1) = 0

U (1)Z = 0 (4)

p(i) = 0

n > 1 U (n)
r

= 0

„(n) = 0 (5)

D (">
z

= 0

p (n) - 0

Strain Components and Hooke's Law

In a cylindrical coordinate system the strain- 
displacement relations are
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The increment of stress o' is related to the
increment of strain e by'Hooke 1s law, viz.

o 1 = D e

where o’ =
< °rr 'a00 '

azz ' Tr0'T0z-zr>T

e =
( Err 'E00 '

czz'Yr0'Y0z ' V )T

( 6 )

(7)

D = A+2G X X

X+2G X 

X + 2G

SYMMETRIC

X and G are the Lamé parameters for the soil 
under fully drained conditions.

Fluid Flow and Darcy's Law

It is assumed that the movement of pore fluid 
through the elastic soil is governed by Darcy's 
law, viz.

v = - (£-) V P (8)
w

where v = superficial velocity of the pore 
fluid

k = isotropic permeability coefficient 

Yw = unit weight of pore water.

Finite Element Approximation

The equations which govern the consolidation of 
an isotropic elastic medium were developed by 
Biot (1941). These combine the complexities of 
an elastic deformation with a consolidation 
process. An approximate solution to these 
equations may be obtained using the finite 
element method (e.g. Booker and Small, 1975).

If the continuous values of the coefficients 
u(n), u (h ) , U<n>, p (n) can be adequately 
represented by values at selected nodes, i.e.
6' ', 6 ,  6'n), q'n , then we may write

T
Ur = Sr

Sr, etc. (9)

For convenience the superscript n has been 
dropped in equations (9) and in the following.

It can be shown that for the time interval At, 
from t to t, the finite element equations 
for consolidation have the matrix form

K

-L

-L

-BAt*

A6

Aq

AF

At4>q (tQ)
(10)

where A6 = (A 6 r, A«0‘■ A6-z

II
t 
Ch
 

ft - 6
(to>

Aq = q (t) - q (to>

and AF = F (t) - F
(to>

= increment of applied nodal forces.

For the Fourier representation of the field 
quantities used in (1) and (9), we have

K = / B^.D.B r dr dz 
V
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A solution for the nodal displacement and pore 
pressure coefficients, Ur etc, may be obtained 
at a discrete number of times by solving 
equations (10) and using a marching process. 
The solution for the nodal displacements and 
excess pore pressure can then be found using 
equations (1). For stability of the marching 
process g >_ 1/2 (Booker and Small, 1975).

SOME TYPICAL SOLUTIONS

Solutions have been obtained for two different 
vertical piles embedded in the same saturated, 
elastic soil mass. Both piles are subjected to 
a horizontal load P^ only. The following cases 
were considered

(a) Jt/rQ = 40

(b) J>/rQ = 20

where I = pile length and r = pile radius.
In both cases the shear modulus of the soil 
is Gg and the drained Poisson's ratio is \jV 
Each pile has a Young's modulus of E and each 
is considered to be impermeable. For the 
particular soil and piles studied the following 
numerical parameters were adopted:

0 -068 H-------------- 1--------------1-------------- 1 "i 1

10‘3 10"2 10"1 10° 10' 102

Fig.1.Lateral displacement of pile head v time; 

Ep/Gs = 10 3 < W o  = X' Vs = °-4
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Solutions were obtained using two-dimensional, 
8 node, isoparametric finite elements. 
Predictions of the lateral displacement of the 
pile head p in the direction of the applied 
force P, are plotted against time in Fig. 1.
A non-dimensional time is plotted as the 
abscissa, using

T =
ct
F 2" ( 11 )

where c 2G
1 -  v '

(______ ËL
l l  -  2 v 1

Fig. 1 shows that in both cases p increases 
with time from some immediate (undrained) 
response p to some final (drained) response 
p . At uall times the pile with l/r = 20 
exhibits a slightly stiffer lateral response 
than the more slender pile with 1/r = 40. 
Poulos (1971) has previously demonstrated this 
trend for the immediate and final response.
The drained solution for the pile with l/r = 
40 is also in good agreement with a finite 
element solution obtained, independently, by 
Randolph (19 77) .

Lateral displacements for both case (a) and (b) 
are again compared in Fig. 2, where the degree 
of displacement, defined as

Fig.2. Degree of lateral displacement v time;
E /G = 103, P./G r2 = 1, v ’ = 0.4 
p s h s o s
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is plotted as the ordinate. When presented in 
this form it may be seen that there is very 
little difference in the time response for 
both of these piles.

CONCLUSIONS

An analysis has been presented which will allow 
a solution for the consolidation of an elastic 
soil due to the lateral loading of a pile. The 
method has been illustrated with several 
examples.
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