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Deviatoric Stress Strain Theory for Soils

Theorie Effort-Déformation de Distorsion des Sols

E.JUAREZ-BADILLO Research Prof., Graduate School of Eng., Nat. Univ. of Mexico, and Consultant,
General Direction af Technical Services, Ministry of Public Works, Mexico

SYNOPSIS A general non linear deviatoric stress-strain theory for soils is presented. Theory
relates fundamental stresses to natural effective shear strains. Shearing resistance and devia
toric behaviour are incorporated into one single equation. The theory is applied to the trlax
ial compression and extension drained tests in normally consolidated clays and to the compres -
sion branch of the standard onedimensional consolidation of clays. It is found a relationship
among the angle of shearing resistance ¢, the coefficient of compressibility y, the coefficient
of shear deformability p and the value of the coefficient K, in onedimensional consolidation.
Comparison between theory and experimental data on Weald clay is made. Theory anticipates a

unique compression and extension deviatoric curve.

This is experimentally so up to 50% of the

failure deviator stress. Theory duplicates experimental data of the triaxial extension test
after 50% of the failure deviator stress. To values up to 50%, the experimental data suggest
higher values of the potential angle of shearing resistance at the start of the triaxial tests.

"Nature L4 nonfinear"
INTRODUCTION

New concepts of deformation, applicable to in

finitesimal and finite deformation, have been
introduced(Juarez-Badillo-1974a, b). The con-
cept of effective natural shear deformation

was presented and the idealized shear in only
one direction, only two directions and a par-

ticular three dimensional case were analysed.

This last case was considered in relation to
the compression and extension triaxial tests.
Let fig 1 represent a cylinder which is sub-
jected to a compression or to an extension
test . Let x be the inclination of a family
of parallel planes, covering the whole cylin-
der, whose shear deformation will be consider
ed. Let us also consider the symmetric planes
inclined w-x with respect to the positive xj
axis. If now these planes undergo an infinite
simal effective shear deformation dn, it was
shown that the corresponding deviatoric axial
strain dea is given by

de, =dn sin2x m
where the upper sign is to be used for the

compression test and the lower sign for the
extension test.

Fig 1 Cylinden in a Ztrniaxial test

In actual triaxial tests there are effective
shears taking place in all possible planes.
In all sets of symmetric planes inclined x,
o4 x% T)/2, and all 8,0¢@47. Consequently, the
resultant deviatoric axial strain is postu-
lated to bwz given by

deﬂ-ajdoj dq:mzxdx-f‘lTj dl]sm 2xdx (2)
If dE.,dézand d£y are the total instantaneous
longitudinal strains along the principal
axes, the instantaneous volumetric strain dey
is given by

de, = dg, +de, + dey (3)
The instantaneous isotropic component of the
instantaneous strain tensor, d€,is given by

dEx db*gj;;’dty: d?v (4)

and the instantaneous deviatoric components
will be

de, = dg,~de
de;= déz-dé (5)
dej=dey-de

Note that de,+rde,+de;=o.

For standard triaxial tests d&;=dé&=dé

(radial) and d€, =dé&, (axial) and integrating
the resulting equations we get

€y = &g+ 2&, (6)
. Ea+r2&, _ Ex (7
E= 3 - -5
and
€47 Ea-E&
€ =€, -E=- 7 €4 8)

since eq+ 2@, =0.
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All strains dealt with in this paper are na-
tural strains, that is,

v av A
£, = b =in A (9

and rx %
| “=in X, (10)

L= o

where V stands for volume.

Furthermore, the effective general natural
shear strain n corresponding to a fixed direc
tion x in phys%fal space is given by

A=) di = ["(dy)n (1)

where (dy)y stands for the infinitesimal
change of angle of the normal to the lines
ocupying the fixed direction x in physical
space.

Volumetric behaviour of clays has been dealt
with elsewhere (Juarez-Badillo-1963, 1965,
1969b, 1975). Shearing resistance has already
been dealt with as well(Juarez-Badillo 1969a,
1975). Non linear theories were developed in
terms of equivalent consolidation pressures
and fundamental stresses.

This paper is restricted to deviatoric beha-
viour of soils and a practical azpplication to
Normally consolidated clays is made. Delay ef
fects are not considered.

FUNDAMENTAL LAW OF SHEAR BEHAVIOUR

The basic ideas that govern the whole develop
ment are:

1. Any distortion(change in form) of a body
requires effective shear strains.

2, Effective shear strains uniquely define
distortion.

3. Effective shear strains do not produce vo-
lumetric change.

Inverse of statements 1 and 2 are not true,
that is:

4. Effective shear strains may not produce
distortion. The result may be only pure rota
tion (Juarez-Badillo-1974b).

5. Distortion does not define effective shear
strains. There may exist infinite spectra

of effective shears producing the same distor
tion. (Juarez-Badillo-1974b).

Let o_ andz be the fundamental normal stress
and the shearing stress in the horizontal
planes of the "sample" of fig 2. Consider the
ideal case that only horizontal planes may
undergo effective shear strains under a change
in stresses. For "normally consolidated" sam
ples fundamental normal stresses are equal to
effective normal stresses.

7 =tany

-

Constant o, |
Increasing 7 —&

Effective shear in "only" honizontal
planes

Fig ?
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Another basic idea is:

6. Any change ing and/or o
in the effective shear n.
Variable % where n =0.

produces a change
Except for =0 and

For constant o
stress-strain

and increasingz the following
Maw is postulated:

If ¢ (assumed constant) is the angle of shear
ing resistance, then to a change d% corres-
ponds a change in effective shear strain dn
that is directly proportional to 4% and in-
versely proportlonal to (Tmax —T), more bas
Sically to (®)ma- &=tong- F . Accordingly, the
following relat1onsh1p is postulated
do

dq = Ptan¢-*—-?_n a2

Multiplying numerator and denomlnator by cot¢

di=p et g ik

In eq 13, cot ¢{%— viries between 0 and 1 and
furthermore
7 ]
AT = 14
cot ¢ Ja Jcotg g—':e P (4

The coefficient of proportionality n will be
referred to as the "coefficient of shear de-
formability" or, briefly, the "shear coeffi-
cient". If, only for this section, it is

written
T
x=colt ¢ - (15)
then eqs 13 and 14 may be written as
dijsu L dx (16)

and

4 )., = (7

For a complete study of relationships of the
type of eq 16 the following more general ex-
pression will be considered
n Y
di=p{75%) dx 8)

where, again, eq 17 holds.

Integration of eq 18 for »=0, 1, 2 and 3 pro-
Vides

For py=o0 dp=pd=
and  AEpx or ﬂ-:x (19)
For vzl dij=p A&
and  Feulndy o Felnzix (20)
For y=2 di=p (75) dx

= n
and =M g er P”/-lx' (21)
For V=3 d-‘;-}-‘(z_:i)jdx

(2-x) 7. xl2-x)

and /‘z,(l - o 7:].- g(tz-:)"- (22)

Fig 3 shows the graphs of eqs 19 to 22.

The above integrals and all others in this
paper were obtained using Mathematical and
Integrals Tables (Peirce, B.0.-1929) and
(Hodgman, C.D.-1941).

For both increasing ¢ and o_ the following
fundamental law of shear bchaviour is postu
lated (compare with eq 13)

ok 1
d‘.:/'l[l—(ctot: '_aﬁ-lqcalg% cob’é: ﬁgn'l‘! (23)




For this eq 23 we have again

i ]
[co!¢ | et M (24)
* On

; Zy.dz _ z d0
It is observed that ds v.:l(q:.]— - A
then the quantity - g§; &, that enters in eq
23 1? the complement of the total differential
of 3. Note also the similarity between/—aﬁ&
and /rate %‘ The first quantity is a measure
of the "distance" to failure when such a dis-
tance is decreasing (increasing %) while the
second one is the "distance' to the "“symme-
trical failure condition' when the distance
to failure is increasing (increasing Gn) (See
figs 2 and 4).

&1

Fundamental Law of shean behavioun
{v=1) 4in netation to othen Adimilan
exphessions

For decreasing t the quantity(/-<ol¢%)"shou1d
be substituted by-(ircot¢ £). Similarly, for
decreasing ¥, the quanrzi Y =(rcete ft]"should be
substituted by (1-cet¢ =)' " For normally con-
solidated soils with increasing dnand & the
fundamental normal stress (i is equal to the
effective normal stress and for drained tests
Op is equal to the total normal stress.

Fig 3.

For a better mathematical appreciation of the
resulting stress-strain curves the following
expression, corresponding to v=2, will also
be considered

i /__\2 ., dc ‘ W z_ do;
dq-ﬂ[(mrg)w*f?; (g & 42 9
For eq 25 we have again that eq 24 holds.

Application of eq 23 to preconsolidated clays
will be the subject of another paper.

COMPRESSION AND EXTENSION DRAINED TESTS

In compression drained tests, axial increased,
and extension drained tests, radial stress in
creased, a normally consolidated sample is at
every instant in a normally consolidated state
if preconsolidation due to delay effects is
disregarded. Both types of tests will be ana-
lyzed simultaneously. Whenever a double sign
appears the upper one will refer to the com-
pression test and the lower one to the exten-
sion test. Applying eq 23 to the planes in-
clined x it is found (the same is true for the
symmetrical planes inclined w-x), with refe-
rence to fig 4, and where o, and 03 are the
major and minor compressive principal stres-
ses.

1/30

b) Exlension lest
(radial stress increased)

a) Compression fest
(axial siress increased)

Fig 4. Triaxial drained tests. Nonmally con-
solidated clay

I 0-0y =0-0c = 29 (26)

then Bx=qsin2x . dg=sin2xdq

Ox =@, +q(1* cos2x) ., da, = (1 ¥ cos2x) dg (27

and the quantities entering eq 23 are then

given by 4
. 9sin2x - Sin 2% g
%—f‘az~q(,: coszX) ’/'(ltcosﬂ 7 (28)
dT,__ sinzxda ____ sinzx dg
TG T+t cos zn) Trliz cos2%) g O¢ (29)
4o __(2cos2x)dg - /resszx dq_ N
G, “TrqUrcoszx) /+(1tcoszx)i @ (305
Using th: symbols
A=7s2cos2x B=cotpsinax (31)
and
9= ¢ (32)
Eqs 28 to 30 may be written in the modified
form - o
8
col G = srags e (33)
d&y__ B
:°t¢"ﬁt_—/+1q¢ d‘-'l: (34)
doaa . _ A
_o"."nAq, 49c (35)

Introducing eqs 33 to 35 into eq 23 it is ob-
tained , 5 7
dj.:p[—:a__—f_/'AqC 90 7RG dqc- o —"f—'(., % % dq:]
Simplifying this equation we get

df. - s8dg. ABqc d9.

MR TR A B T T A B) 4] (17 Aq0) (36)
Introducing eq 36 into eq 2 we obtain

T
de,: :V}ljol% - ﬁ%%h‘-ﬂsm 2adn (37)

Integrating eq 37 from 9¢=0 to q.=q. we can
write

2 % fe
2T : ada; AB 9 dq,
€, ":'"“{L_I'_QLJA- = ‘[7—2_—1'(A95)‘)(J("A‘i¢) dx (38)
The integrals in @c.of eq 38 are of the form
(Peirce, B.0 -1929)

[a%x =% Inta+bx) (39)
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xdx = a ’ S
[t———_n'b‘”a,‘.,‘) 'n—b'/ o'b[r In(asba)- i,‘n(nvba)] (40)
Applymg eq 39 to the first integral in eq 38

IIT?:#-—ZS_‘ ABD"("U\ 5)‘1()]
then® A
77(2"3)‘:,72—L|n[l+u-8)q¢] (a1)

Ale)’lng eq 40 to the second 1ntegra1 in eq 38
AB9cdq,
J|0(AQ3$](|:AQ) AAH) [rb""("("s)‘fc ”'(""‘f‘):r
X!
[Ifl:' )‘;s (|vA7c)__ m'"["“"’)‘?‘]'l" (1+Aq¢) (42)
Introducing eqs 41 and 42 into eq 38
en:$ﬁ)djsin21{;?—sln[l+(A~B)Q‘J+A'B tn[1+(A+B)q)
Sln (A dx (43)

The last term in this integral is, from eqs 31

72
}[stxlanch)dz {Inlﬂq( (1% cos 2x}]sin2x dx (44)
o
This integral 15 of the form(Peirce,B.0-1929)
f/nxdx: xinx -x (45)
Apalylng eq 45 to eq 44 we obtain

Jln [1+9:(1 2cos 2x]sin2x dx= 3 - {[nq< (2 coszx)]

In[n-q‘(l’coﬂx)] [n%(u*cosln)]l (46)
For the compression test(upper 51gns) we then
obtain

Jrln[uq‘(ncm 2x)sin2xdaz - { 1= (1029 In(1+29¢c) 41 +2q‘}

and /2

Jmﬁ*qg(lnoszx)s[n2xdx='—;;—:'£/ﬂ(erG/c)—l (47)

=
For the extension test we similarlyobtain,
/2

Jln[nq,(l-toszx)sinzﬁdx- 75 (14 240) I+ 29e)~1- 24+ 1}

and .,

Jln[uq‘(: cos 2x)sin 2xdx= ";‘7‘ In(1+29c) -1 (48)
o

Both integrals have then the same value given
by eq 47 or 48. Eq 43 can then be written

Ca=s T I (49)

wherg from eqs 31, 43, 47, 48 and 49
I_){I:;:sl il 21//7[71»7( {1+ cos 2x-col $sim 22)) d x
2

14052

o Sin 2, 7 Irws b sin 2.
J/f“‘!fo‘p(’ﬂﬂZ sin ””["7:( rws2x+cot@sin A)Jd;(

/+z%
- In(1+2
,/ (1+29:)+ 1 (50)
The integrals in eq 50 have the same value if
+ cos 2x is substituted by -cos 2x (see also
fig 4) and the deviatoric axial natural strain
is then given by eqs 49 and 50 for both, com
pression and extension drained tests, negative
in the first case, and positive in the second
case.

The author has been unsuccesfull in finding a
closed form for the integrals in eq 50. It

would be very good to know if they reallycxist.

Eq 50 can be calculated once for all, for dif
ferent values of the angle of internal fric-
tion ¢ if it is written in a normalized form.
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For this purpose we get, from fig 4 and eq 32

.. _Imes . 7cma!
sing= O +9max ~ I+ Yemax (s1)
then d
Gemax = ,—:VZW (52)
Variable V¥ is defined by(where eq 52 is used)
/-S/ﬂg
y= 7cmax 7y Fe (53
then .
U Gemax V= o0 Y S

Int‘raoducnng eq 54 into eq 50 we obtain
—"i%unzlln[li Zn8 v (1ecos 2n- <ot psin 2] dx

lvtasz.-mtp 3822 7-3ing

2 3
/4€052% 14208 2A+COt g sin 2A)
Jm’"’"‘"l"'-m’("“’ s oty L

3ieg .

1*2 7 s

—2:6.-3’;’-/”0'2/ o] +1 (55)
Eq 55 shows a type of "symmetry" that facilita
tes mathematical calculation in a computer.
Relative simplification can be gained using
the identity s+cos2xzcotxsm2x. Some of the cur-
ves obtained appear in fig S.

S I, y)
Fig 5 Theoretical deviatoric sZress-strain
cunrves for v=1
Eq 55, for ¢=0, reduces to

In the two integrals of eq 55 we have

. cobt @ sinz2a
‘,'_':‘ Trcos an—cotpsiaZn =" | (56)
1 /1+coSs2X =
;'.% 7+<os Zxtcol@sina 720 (57)
| ,—"57,%)'(1+cas2x:mt¢sinz;):;ysinzx (58)
In the third term of eq 55, we have
l.,,é’m[n‘z——?;’"’ yl=0 (59)
Furthermore, applylng L'Hospital's rule
fim |,.(|1-z,—,—,%7 n(l'lQ hm ir o (60)

#0 zl~$/ﬂ'y
Introducmg,_eqs 56 to 60 into eq 55

I 920" ;/nlen[/ ysin2a]dx (61)
Eq 55, for $=90°, it is evident from eq 23that

lgze =0 (62)
Note that Ig4.,given by eq 61 is a 'virtual”
curve since for ¢:0, g max =O Eq 61 has
only a mathematical 1interest.
At the origin, for g0 or Y=O ,6 the "slope"
or rate of deviatoric deformability may be cal



culated as follows.
From eq 37, for C,¢=O, it can be written

. 2
[ded, .= 71 8 dgc sinzx dx (63)
Using eqs 31, theon
[.de“ =-7, col¢/7-/r'/z’ dx=+7, zal-¢[17—] (64)
E 2 O_SJZX X =M %

qc=0
where the value of the integral was obtained
from (Peirce, B.0.-1929).

Then i 2
de,,] T2 cob
=3 = O
[Tc/c g0 - T/ ¢ (65)
In terms of the normalizing variable ¥, intro
ducing eq 54 into eq 65 it is obtained

ded 2= T cobg 20 &
]y.077 HHet?

" dy. /-sing
and then

deq _ - n* cos ¢
[ ], P (0
The curves of fig 5 satisfy eq 66,

Eq 65 can be generalized to include overconso
lidated clays. The initial isotropic fundamen
tal pressure is now equal to the initial equi
valent consolidation pressure ¢_ correspon-
ding to the initial consolidatidn pressure @
Consequently, if e is defined by (compare
with eq 32)

qe:.%i_e_ (67)

Eqs 63 to 65 are valid if substitution of q(
by cieis made, and it can then be written

-dea _- T

[dqe] =3 pcote (68)
Qe:o

where as already noted, the upper sign is to

be used for compression tests and the lower

sign for extension tests.

As, from eqs 67 and 32
qe-ﬁ_=_q_a-_‘-q(£ (69)

T de” T Ge T Je
then, introducing eq 69 into eq 68 we obtain
dey . r? g
[Hq( ‘k'—'o"Tycoé¢ﬂé (70)

Fq 70 includes eq 65 since for normally conso
lidated soils gg = T From eqs 26 and 32
it can be written

G = 9 -GG
7 (71

then eq 70 can be written in the form

deq .13 g
[_ﬁ?‘]m-@_"i""w“"’fe (72)
3 T-U
Eq 72 is useful in practice. It gives the
"slope'" of the deviatoric stress-total axial
strain for all types of undrained triaxial
tests and for the compression and extension
drained tests with J,= constant (J,=0,+0,+0;=
first invariant of the total stress tensor).

For draines tests
be written
des _deq de  _ deéq o dey  (73)

dﬂTcAra'L_dVE_FJ dﬂ':(;zﬂ‘l d%ﬂ; ERPT A
A A

from eqs 7 and 8, it can

-G3
Te
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-

At the origin (rq; =°) the volumetric compo-
nent is given by (Juarez-Badillo-1965, 1969b,
1975)

_dv _ dae 74
dey=5F=-y s 74
For normally consolidated soils in increasing
9 triaxial tests 0.0, and

ﬂ__ dg.
v S ¥ e (75)

For overconsolidated soils in all types of
triaxial tests and for normally consolidated
soils in decreasing 9. triaxial tests

dv__.dee _ dg; _ dae

Vg P e g (76)
where y and tlp are the compressibility and ex
pansion coefficients respectively and p is
the expansion-compressibility ratio.

For increasing (+) and decreasing (-) axial
stress
dac _ . 1 d(@-a3)
=+t gWiTEd) 77
7. 3 o 77
For increasing (+) and decreasing (-) radial
stress

49 . 4 2 d(T-03) (78)
[ 3 A
For J;= constant triaxial tests
a% _
a ~ (79)

Introducing eqs 77 to 79 into eqs 75 or 76
the volumetric component at the origin in eq
73 can be found. One gets an expression of
the type (80)

Ev_ .
Fg—;—_—q or -¢y,

where ¢ may take the values 0,21 or & 2
or is used according to the 3 type 3
the considered standard triaxial test.

and 7
of

An application to Weald clay will later be
discussed.

Eqs 49 and 55 give the deviatoric axial
strain for the compression and extension
drained tests using the fundamental law of
shear behaviour given by eq 23 into eq 2. If
eq 25 (v=2) is used as the fundamental law
instead, the expression obtained from eq 2 is
(Appendix)

Ca=3 M. TTJ (81)
where p; is the shear coefficient associated
to v=2 and

T/ .
J- sing y cobd sinza
s3] e 388y (14 cos 2x- cotpsinzx)
(-3

s-sing

sinaxdx

2
(rrcoszx)cotd sinzx

. sipax ;
g SimzxK Sl en I ~colgsinzg
)+ cos ax-co '\,,,,z,()z5”'”’"[’0-;:"4-7(“ 03 2x-cobps jdl
(<

/2
_sm y=— {rrcoszycobg simax cimarda
/—:rr/nﬁ [1+cos 2x‘cc‘f1inzx_][;¢,—1ﬂ;'n¢)‘(chu?x-rcl#snﬂu]

2

'J(l_a»sgg:)_rgl'o sin2k o z)\ln[h,'_::;',;: y (14 cos znte(-¢sinzxjd)(
(-3

(1403 2x+ cobpsin ax)

/2
_3ing (1+ces2x)cob e sinax sin2xdx
7-siag )][i +aos 2x +Cotdsia zx][;,;f;—:!%\ ylt+cos2x veokgsinany (32)
a 82
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Compare with eq 55.

Some of the curves obtained appear in fig 6.
Compare with fig 5.

Theonetical deviatoric siress-sinain
cunvesd for v=2

In eq 82, for ¢-0, all integrals, except the
first one, reduce to zero and, using eq 58 for
first integralhhipzis obtained

“25/n°2

o=y [ Tyt iw dx (83)
Eq 82, for ¢=90°, from eq 25, it is evident
that

Fig 6

J g gor 0 (84)

Eq 83, like eq 61, gives also a '"virtual cur-
ve' since for ¢=0,q‘ma.=o.

At the origin,for g.z0 (eq 54) or y=0, the
"slope' or rate of deviatoric deformability
is given by eqs 65 and 66 and by eqs 70 and
72.

ONEDIMENSIONAL CONSOLIDATION TEST

In the virgin compression branch of the one-
dimensional consolidation curve the sample is
in a normally consolidated state. In this
test to every decrease in height of the sample
corresponds a volumetric strain and a distor-
sional strain as well. In this test e;=e_ and
™ .t a
ez—EQ—Er—O and we have,from eqs 6

de, =9 - de, (85)
and then, from eqs 7 and 8
deg=d€a- 5de,= 5 dea (86)
Combining eqs 85 and 86 it is obtained
dg, =3 deg (87)

Let o be the vertical normal stress, and
Ko0 Ks = constant) be the radial normal
str¥ss. From fig 7 it can be written

zx:%"—"-o‘vsin 2x (88)
and Gy =LKe g 4+ K20, cos2x
Al i, @

and the quantities entering eq 23 are then
given by .
T (1-ko)sia2zx _ _Sin 2% (90)
Oz  77Ko+ (1-Ko)cos2x™ K4 cos 2X

d¥s_ _ (1-Ko)sin2x  dOv_ sinzx_ dOy 91)
Gx  I*Kot(i-Ko)cos2a Oy ~ kreosix v

dax . ddy (92)
T i v
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where VKo

K=1%, (93)
Introducing eqs 90 to 92 into eq 23 it is ob-
tained

S / cobd sin2x ’ colbpsinzx | dGy
dq, )‘[,M K¥cos2n ™ 7 ike 5y Ny cosia a(v
U Wrcos2 KvCos2n

Simplifying somewhat this equation we get

a cotdsin2x _ __cot@ sin 2a da (94)
",“L,“mﬂ,-cowsmb xfro;zncou'smﬁ] ﬁ,

A
ui'.

Eq 94 can be written as

s 2(wtgsin2x)? do,
di=p (K xcos2n)?~(cot ¢ 312 x)? va (95)
Writing /s-cos22x for sin?2x
= coti¢ (1-coszn) dov
dn,=2p (k+cos2x)o-cob?¢ (1 -cos22x) Ty (96)

and writing cosec’¢ for /s cot?@

SOV L G W—- - S
b LootZp + 2KCos 2x v cosec g cos?2x O,
Introducing eq 97 into eq 2 (compression test)
we get 2
de-mud®| _ colt'e L1-co32y)

9 T JWF-cob®p 1 2Kcos 21y cosee Tg cosien

since -2sin2xdx=d (cos2x).

dlos2x) (98)

On the other hand, the infinitesimal volume-
tric strain for this type of test can be ex-
Pressed by (Juarez-Badillo-1965,1969b and 1979
_dv__ . da 99
dey = e - (99)

Vv

Ho—r N
\ )
HANS
|
1-singd 1-sin¢bg sin g
Kb = - <n.<
A7 14sing "07 T+sing, 07 sing 405995

Fig 7 Onedimensional consolidation £fesi

Introducing eqs 98 and 99 into eq 87 it is
obtained

Tz
¥ __ col?d (1-cos?2x)
F" i"[ ’—z-al’¢vgiro—_s'?.'xv-::seczgw,ux d{cos 2x) (100)
If
x'zcos2x (1om)
then eq 100 can be written as
3.3 2 ¢ 1-x'2 ' 102
[ 3R] Teot ¢['x’.¢al$ozxx":om‘¢x" i (102
The integrals in eq 102 are of the form
(peirce, B.0).-1929)
J"’T‘:v’_q—ean-'*_&:_'ﬁ (103)
and 9
b TR b-2ax
J“‘)’(_‘“d"'T' ‘znc‘ilﬂX”T!—j%a (104)
where
X=a+bx+cr? (105)



and
q=4ac-b’ (106)
Comb1n1ng eqs 103 and 104 we get .
Il 1x - [—Lln)(t 2¢t L:Zac lﬂﬂ"z“"v-i]_l
Lt

g <
arbec --bzfzﬂf_l__ ~ibe2c
a-btc c? 172 (Ea" Vg

zal"

~tan z (107)
But from (Peirce B.0.-1929)
tan"'x-tany = tan- m’; (108)

Applying eq 108 to the corresponding term of
eq 107 we get

4c
- bt2 it bo2e [ A S (142
ban" 522 - fan 22 = fun” ﬁ,, ;‘s.-zan PREaLlLy
- ) _ A
=tan” ‘m 4V tan a—; (109)
where eq 106 has been used.
Introducing eq 109 into eq 107 we get
b, arbe, 2¢-brac P
Jx dxe g In2ie s SR L b T -2 (110)
=t
The quantities in eq 110 from eqs 102, 105 and
106 i\re 2x
2cT - 20sec z‘a K sin ’ (]11)
arbic _Ki-col?p ra tcosectd_ K+2K+| KH)
O-b+C " Ki-colig -2K+ Cosatq  RKA-2K+1 K1 (112)

where the following identity has been used

I+cot?¢p=cosec?p (113)
And (where eq 113 is also used)
2¢7-b v 2ac _ 2cosectd -4+ 2 (K- col@) cosec?e
¢z - cosec%g
_ 2¢cosec’p+2Kicosec?P —4 K2
- cosex 4
= 25in?¢ (1ek®- 212 500%9) (114)
\/"7 = /4 (K% col?@) cosecty 41
= 2\/K*(cosec i¢-1) -col ¢ coser ¢
22cotyd JK*-cosec’¢ (115)
where again eq 113 has been used.
Using also eqs 114 and 115 we then have
2¢7-b' 2ac ;-sm¢ 1+k2-2K35in2
T 77 cotgki-cosecig (116)
and (u51ng also eq 113)
_ 2colpVKi-cosecp _ zccl ¢py/K%cosecie
a-c S KLcol @ -cotecig - JrKi-zcosec ® (117)
2z .2 = 2
C 7 Tseciy S 2577 (118)

Introducing eqs 111,112,116,117 and 118 into

110 we get
F’/ LI 25i0%¢ [icsin' jn KL K”
“r
e K2 265N
*Zectd - corecip O
il}trodudng eq 119 into eq 102 we get
—_= 2, in? K+t
= Meos ¢ [ksin®pin K2l 4+
1+K%-2K*5in*¢ -I]
+2‘0‘0\/K’-coxe:13 (120)
where K is given by eq 93, that is, the ratio
of the compressibility and shear coeff1c1ents
% , is given by eq 120 in terms of the angle
of shearing resistance ¢ and the at rtest coef
ficient of earth pressure K,. More bassically,
the coefficient K.is given in an implicit form

-1 _2¢cotd
tﬂ e z‘oje‘I’

'] (119)

tan™ 2cot ¢ VKLcosec'd
14 K3-2 cosec?®
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by eq 120 as a function of the fundamental
coefficient ¢ and the ratio of the fundamen-
tal coefficients Y/

Coefficient Kein eq 120 is substituted by a

new normalizing parameter n.defined, from fig
7, by
’ No = singy _ 1-Ke
T sing T 1+ Ko)sin B (121)
where ¢, is defined by
Ko 1-8in@e _ I-Nosing (122)

Jrsin®e T Jthssing

in a similar form as is defined the active

pressure coefficient Ko in terms of ¢
_/-Sing

=220 ¢ (123)
A" 1esin g

Introducing eqs 121 and 122 into eq 93 it is
obtained

" i~8/0 g
L itKo _ / /tSinPo 2 - !
K= g ® ;- I=5nds ~ Zsing,  Sndo
=T R

S e =Rosing (124)

The quantities in eq 120 are then iqual to

K+t I+ I+l sind
K-1 " /=% "/ -nesing (125)
14K~ 2Kt /+ = ~2sint
2:0!9;/)(7--4:«:59 2= cokﬁm—
_ 1-28in*dendsin’g
- zn,\h-n,! cos¢ (126)
2cotpictcosecy _ 2 ‘E‘Cﬂl’ﬁ//' Lofect
/+KI-2coseci @ T s 4 %‘ -2 ‘”K
. 2ho\i-nF cose
"_\Lz’—gl-zn}-ﬂlg =7n (127)

Introducing eqs 124 to 127 into eq 120 we
finally get

- ing [, /40 Py

_Jﬂrcvs‘¢[’,'..': In/'n::":¢ +

1-23/n'denlsmie 42N\ cosp
* No\J7-n3 cos ¢ tar” I-2’l,‘onfsin’¢ ‘] (128)

Fig 8 shows graphs of K, as function of n,
for different values of ¢. Eq 122. This fig
also shows the graphs of the empirical rela-
tions Ke= 1-sin ¢ and Ko= 0.95-sin ¢. It is
noted that Ke= 1 for no=0 and K.= KA for ne=1

Fig 9 show graphs of g =f(d,Ng) , eq 128. It
is noted that in eq 128 as tha argument of

tan ! is, for all values of ¢ different from
90°, an increasing function of n, from 0 tow

and later on an increasing function form -«
to 0, then_the value of tan ! increases first
from o to ;T and later on it is to be taken as
an increasing function fromZto7.

For ¢=0, eq 128 reduces to

£ - / -2 a3 _
AN ST R
For ¢=90°, eq 128 reduces to
X -
[,“ L,:qan' ° (130)

For no=0, using L'Hospital's rule in eq 128,
it can be shown that

O\ 1HNesing .
h_r)rz' noln————l_nos'.nQ_z.sm4 (131)
-t 2Mo\i-pF cos¢
,.,L"o zn.,;7=: = cosy kan m2ngengsinig - ! (132)

147



1/30

Introducing eqs 131 and 132 into eq 128 we get

[/‘UL]'\°=O: Inces2P[z sin?p o(|-uin’9)-|]:o (133)

Finally, for n. =1, the coefficient of tan !
tends to = and then we have

[%]no-:. sl (134)

+n, b

o Wed ay (¢=21°48
Ko=
J.68
. |

Fig 9 Gnraphs of FL:F(% no)

PRACTICAL APPLICATION

The whole theory presented above is now ap-
plied to the experimental data of Weald clay.
The data of triaxial tests performed at Im-
perial College, University of London, was
kindly made available to the author by J.D.
Henkel.

From earlier work, previously mentioned, it
was found for Weald clay
¢:2P4? (tan ¢=c.4)
¥= 0.0
JER7A (§p%0-02) (13%)
For undrained tests (Henkel J.D. and Sowa V.A-
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1963) report a shearing resistance envelope
inclined ¢ =25.9° and they also report a
Ko,=0.59 + 10,02. This angle ¢ corresponds to
an angle of shearing resistanfe, with yield-
ing planes at 45° (Juarez-Badillo-196%a),o0f
¢=tan (sin¢ ) = 23.6°. For our value ¢=21°
48°it is proBable a little higher value of
Ko. It is then assumed Ko= 0.60.

For ¢= 21°48' and K,=0.60 corresponds, from
eq 121 and fig 8, a value n,=0.68. For ¢=21°
48' and n,=0.68 corresponds, from eq 128 and
fig 9, a value =4 . From eq 135 we then

have u=22-50/5 and we can write for
Neald’clay 51
Ko= 0.60
e = 0.8 (136)
M =005 (W=4)

Application of eqs 49 7and 55 with ¢=21°48"
and p=0.015 provide the theoretical points
(o) shown in fig 10. This fig 10 shows in
discontinuous lines the stress-strain curves
for drained compression (axial stress
increased) and drained extension(radial stress
increased) tests in normally consolidated
Weald clay. The continuous lines are the
corresponding deviatoric curves which were
obtained subtracting the isotropic component
strain to the total axial strain, eq 8. The
isotropic components were obtained from the
corresponding curves not included in this
paper (Juarez-Badillo-1965, 1969b, 1975). The
experimental and theoretical tangents at
origin are also noted. Fig 10 also shows, for
comparison, the theoretical points obtained
from eqs 81 and 82 for v=2 and using p,=0.008
The strength is, from eqs 26, 32, 52 and 135

G-01 ) __2sing _
(== )f‘/-ﬂ'w" 118 (137)
Experimental values of(ggglh were 1.16 and

1.18 for compression and extension drained
tests repectively.

Fig 10 shows coincidence of deviatoric compres
sion and extension curves for Z5%¢ up to 50%

of the strength. For higher values the com-
pression test shows higher deviatoric strains.
Theoretical points fﬁ}l on the extension de-
viatoric curve for #F* grater tﬁgn 50% of

the strength and for values of Jﬁgl up to
50%, theory overestimates deviatoric strains.

Exnerimer ntnl tangent at arigin
~Thecre at origin {¥=1)
\ \
& , Total axial strain ompression
{axial stress eased) and extension
A (radial stres reased) (After
Henkel)
f . Deviatoric axial strains in
o compression and extension
i soretical points for eqe and egq (u=0.015 »=1)
7 x Theoretical points for e, and egq {py 08,1°2)
Natural axiai strain, %
Fig 10 Drained £rniaxial tesits. Normally con-

so0flidated Weald clay



Theoretical tangent at origin from eq 72 is
dea =Z50.015xz2.5= 4.6%
dm—“:‘ __J_ 0 7 °

Experlmental tangent at origin, from fig 10,
is 1.85%. If this value is introduced in eq
72 it is obtained

T”/ur.o‘¢-/?f% (139)
and for u=0.015 we get

[cot ¢]

(138)

arlqm S [¢]or59iﬂ =45° (140)
Eq 72 can be written
dea ge . T*
[d—a‘";r- g7 g Hcetd (141)
<
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Application of eq 141 to the totality of the
stress-strain curves of drained and undrained

compression and extension tests is shown in
Table I. The symbols used are

= % .
Theor = =7 3 g 14
d @ Ithesretical G JTheor ( )
_ .K dfv}
BlyTe (143)
Eaparimental % Exp
a
Td R (144)
dea
d—‘a-,.a- (145)

TABLE 1. TRIAXIAL TESTS. DATA AT ORIGIN. WEALD CLAY

e 2 e ° o © Average
TRIAXIAL TESTS OCR- | OCF. | @Orheor | @pxp [ € ] o value
oploc | oefoc 2 % 2 %
Drained Axial ig }50 g] }S };’
compres- | stress 20 | 16 0 1o | s
sion increa- | 55 20 0 0s | 10 LS
lests sed 4.0 26 0 0.5 -1.3
8.0 a1 0 0.5 2.0
12.0 5.2 0 025 | 1.3
24.0 7.0 0 025 | 17
Radial 1.0 1.0 0.1 0.9 0.9
stress 1.7 L5 0.2 1.0 1.5
2.0 16 +0.2 08 1.3
decrea- | g 26 0.3 0.7 18 2.0
sed 8.0 4 0.3 0.6 25
12.0 5.2 0.3 0.6 31
24.0 7.0 +0.3 0.6 42
1.0 1.0 0.2 2.3 2.3
! 4.0 2.6 0 08 2.1 2.0
constant 1150 | 522 0 a4 | 73
1.0 1.0 0.9 9 | 19
Drained Radial 2.0 1.6 0.1 0.6 +1.0
exlen- stress 4.0 26 0.2 0.7 | 18 2.5
sion increa- 8.0 4.1 0.1 +0.6 425
tests sed 12,0 52 0.2 0.7 | 36
24.0 7.0 0.1 0.6 | w42
- 1.0 1.0 0 W10 | +1.0
Axial 17 LS 0 W0 | .LS
stress 2.0 16 40.1 09 | w13
decrea- | 49 26 +0.1 05 | <23 2.0
sed 8.0 4.1 0.1 0.4 .16
12.0 5.2 0.1 wd | o2
24,0 7.0 0.1 204 | 228
1, 1.0 1.0 -g .(1]; H 2o
4,1 2. +! +(, 2. +2.
constant |39 bt 402 08 | a2
. -2, -
Undrained | Axial | 19 | |2 : el Y
compres- | stress 20 16 N 05 0.8
sion tests | increa- 2.7 2.0 - 0.5 1.0 1.5
sed 4.0 2.6 - 0.5 -1.3
8.0 a1 - 0.5 2.0
12,0 5.2 - 025 | L3
24.0 7.0 - 0.5 3.5
- - .0 10 B 0.5 0.5
Undrained | Axial L7 IS - +0.5 +0.8
exten- stress 20 1.6 +0.5 +0.8
sion tests | decrea- 4.0 26 +0.25 +0.7 +1.0
sed 8.0 a1 025 | +10
12.0 52 - 025 | +13
24.0 7.0 . «0.25 | +17
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Table I ghows the overconsolidation ratios
OCR = 5=, wheregp is the preconsolidation
pressure, and the corresponding e@)erimental
overconsolidation factors ocr = -g= Alter-
natively the OCF can be estimated from
(Juarez-Badillo-1965, 1969, 1975)

ocF =(ocr) P (ocr)™? (146)
Theoretical isotropic strain slopes, eq 142,
were obtained from eqs 4 and 80

e dey
Euer >3] 75 =3 lon) (147)
@c 4Theor
where ) 2
€=0,*gst5 (148)

depending of the type of drained triaxial
test as discussed above. The values obtained
using eq 135 appear in Table I.

Experimental isotropic strain slopes, eq 143,
we obtained from the corresponding experimen
tal curves. Theoretical values are, on the
average, about twice the experimental values.
Complete thenretical curves appear in (Juarez-
Badillo-1969b).

Total axial strain slopes, eq 144, were ob-
tained from the corresponding experimental
curves. Deviatoric axial strain slopes, eq
145, were obtained subtracting the experimen
tal isotropic strain slopes from the total
axial strain slopes, eq 73. Finally, the pro
duct of the deviatoric axial strain slopes

and the corresponding OCF, eq 141, were ob-
tained. Average values for each type of test,
discarding the highest and lowest values,

were calculated and rounded off to 0.5%. Over
all average value for drained tests is 2.0%
while for undrained tests is 1.25%. These
values support eq 139 and we are forced to
conclude that, at the origin, for u=0.015,

eq 140 is true for the totality of stress-
strain curves of triaxial tests on Weald clay.

DISCUSSION

The theory developed above and its application
to Weald clay bring forward some important
points to be elucidated in the future. First,
theory anticipates a unique deviatoric curve
for drained compression(axial stress increased)
and drained extension (radial stress
increased) tests on normally consolidated
clays. For Weald clay this was experimentally
so up to 50% of the failure deviator stress.
Later on compression test showed higher
strains. Can this difference be explained by
some effects, like "anisotropy' and non homo
geneity of the clay samples, not considered”
in the theory? This should be elucidated ex-
perimentally. Second, it is clear that, in
this approach, parameter v=1, eqs 20 and 23
and fig 10, for the fundamental law of shear
behaviour is the only one to be considered.
Third, smaller strains at the start of
triaxial tests is a behaviour that requires
further experimental evidence before further
theoretical efforts are made to explain them.

With respect to the second consideration above
we can still add that for v=0 in eq 17, eq 23
reduces to

df=pcotdp d(E) (149)
Introducing eq 90, corresponding to the one
dimensional consolidation test, into eq 149
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we get
- 'n ZX  _
dij=peotddienzn =0 (150)
that is, there would not be any distortion

and, correspondingly, nor any consolidation.

The experimental fact that K= constant, eq 93
in the onedimensional consolidation test then
turns v=0 as an impossible value for v in
this theoretical approach. Fractional values
of v are also not considered.

Highly desirable are experimental data on the
relationship among the angle of shearing re-
sitance ¢ and the compressibility and shear
coefficients y and u. Does p depend on ¢?
What is the range of variation of n, and ¥u
(eq 128)? On this respect from fig 8, for ¢
between 15° and 30°, for K, between 0.5 and
0.7 and also for K, between 0.95 -sin¢ and
1-sin¢, we get values of n, between 0.6 and
0.75 and from fig 9, for the above intervals
of ¢ and n,, we get values of §ju between 2.5
and 5 (;7? between 0.2 and 0.4). So we may
conclude tlat most common values of n, and[ﬁ;
are

Ne=0.67 £ 0.07 (151)

7§:4t| (152)
From eq 152 the compressibility and shear de
formability ratio is about 4 and then both
coefficients are not independent of each
other. How far this is so? Assuming it is so
the shear coefficient can be estimated from
the compressibility which in turn can be es-
timated from the liquidiimit W from(Juarez-
Badillo-1975)

y20.0016 (w,-10)
and introducing eq 153 into eq 152 we get
M =0.0004 (wi-10) (154)

Wave propagation requires tangent at origin
Young's modulus E, under undrained conditions.
From eq 141 using eq 140 we get

(153)

_dea SIEM
[d(u—.-v;)}m.ﬁ_.,o‘ 7 Te (155)
and then J
_[dig -q3) -8 UTe .
Eﬂ"[ d4€, ]cr,-a'_q-.-o- w2 (156)

and the overconsolidation
the overconsolidation ratiog/6
e

In terms of ©
factor g/ or

fo =40 & & (157)
and introducing eq 1gﬁ into eq 157
5 O -
fo= 1 o (o (158)

Eq 158 for Weald clay using eqs 135 and 136
would read

Eo = $40c (0cr)™?
For undrained tests form Table I it appears
that E, is even grater. For an 'Average value"
of 1.0% corresponds (compare eqs 155 and 156)

£, = 100 % (0¢ R)Y? (160)

Further evidence of the applicability of eq
157 is needed, specially for the difference
between drained and undrained tests showed
by Table I.

CONCLUSIONS

The most important conclusions and recomenda-
tions are as follows:

(159)



1. Deviatoric or distortional (change in
form)behaviour of soils is the macroscopic re

sult of a complete three dimensional spectrum

of infinitesimal effective shears taking
place in all possible planes in a flat
physical space (compare eqs 1,2,37 and 38).
2. Infinitesimal effective shears are due to
a change in shear stress and/or normal funda
mental stress.

3. The fundamental law of shear behaviour
given by eq 23 is postulated. The shear coef-
ficient p is presented.

4. Integration of the infinitesimal effective
general shear strains give eqs 49 and 55 for
the deviatoric axial strains of compression
(axial stress increased) and extension(radial
stress increased) tests on normally consoli-
dated clays. Theory anticipates a unique
curve for both types of tests. This requires
further experimental verification.
S. Experimental curves on Weald clay for all
types of triaxial tests (compression and ex-
tension, drained and undrained, normally con
solidated and preconsolidated) show smaller
strains at the start of the tests than those
predicted by theory. This fact suggest a po-
tential angle of shearing resistance ¢=45° at
the start of the tests. This is somewhat dis
turbing. -
6. Eq 128 (fig 9) relates the compressibility
shear coefficient ratioto the angle of
shearing resistance ¢ ahd the parameter

no= f(¢, Ko)

7. Experimental evidence indicates strong
relationship between the compressibility
coefficient y and the shear coefficientu:ysapm,
Eq 152.

8. Tangent at origin Young's modulus E. for
wave propagation purposes given by eq 156 is
proposed.
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APPENDIX.- OBTAINMENT OF EQS 81 AND &2

Eqs 81 and 82 can be obtained as follows

Introducing Eqs 33 to 35 into eq 25 it is ob-
tained

d'l;-,‘h[(__‘q_q?)/uq, Fe - (—"—/f-_«,,} (m‘w '7¢d‘7] (A-1)

Simplifying this equation we get
B {1+Aqc)
= /“{[n(/\ s)qq*d‘ft fn(na)qc]""d‘?‘}

we obiain

(A-2)
Introducing eq A-2 into eq

Ll
dea:;ﬂpzja{[,{%%;lq‘—q,dq(—w—&z‘)—q‘?dq(} sinzxdx  (A-3)
Integrating eq A-3 from Qc=0 to qc=qc
» . Fiengade (7 A%dqe
Eqe A ’jm'" 2’{1[“(/\-8)7: 2 j [1+(A+8)qc]}? }

The integrals in % of eq A-4 are of the form
(Peirce, B.0.-192
dx

(A-4)

!

@b = E@eD (A-5)
and P
J(_—_a:bx,;’: _z[|n(ﬂfbx)q»a—g—'bl-} (A-6)
%P1y1ng eq A-5 to eq A-4 we get
J[n(l\ 8)312" { u\-ﬂ)[n(A B)qc]} {A [ANTY B)[n(A B)q;]}
e
R (A-7)
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L\pplymg eq A-6 to eq A-4 we get a
¢ 1 ﬂ <
{[lr(A‘ B4 B)‘{l"[““\ Maid My e (A~B)<((}

S Il 4 o )

S {inle 09 ) (A-8)
and, similarly
“ a.dq . o (AcB)9,
J['_(A—B;lﬁ i b SEOIGY )

Inotroduci/ng eqs £-7 to A-9 into eq A-4
™A
, -B
[ TT}JzIB sthx{;raf—-M(v ll\iAﬁ’[\"("'(kB)(") - :(A_AE‘?
o
__A {ArB)ge”
(Avvﬂ)‘[.\"(H(MBH‘) n(MB)q]}dx (A-10)
Eq A-10 can be written as

=3 M2 T (A-11)
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where, from eqs 31, A-10 and A-11

J: 2 e cobdsin 2x
|v41‘(u<o>21 colPsin2a)

sin 2adnr
S’l tox ) cot d 502k .
L(l +CosZR-cabgsmZayi " 2xin[1+qelirces2r-cotp sin2x)ld x
/2

Qc {1 +cos2r)cotg sin 2%
J[H-Laslu ~cotpsm2xI[rqc (14 cos2x-cotpsinzx)]

i
sin 2 " .
'I(::::Zz:"‘cc::l pss'l"'n le 731 2% '"l_l*‘h (1+cos2x+cot sin Zﬁ))dx
(-

/2

sin2xdx

Fe (1rcos 2X)cob P sin 2n
[n 405 Zn v cobp 51 2X][14q, (14 CoSs2n ¥ €ctf SN Tn))

sin2xdx(p-12)

Introducing the normalyzing parameter Y, eq
53, into eq A-12, eq 82 is obtained.



