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Stresses and Strain in Undrained Test

Tension et Déeformation dans |'Essai Non Draine

K.-H.KORHONEN The University of Oulu, Finland

SYNOPSIS The deformation, which occurs during the undrained shearing to the saturated clay
sample isotropically consolidated in triaxial apparatus, has been studied mainly as "plastic
yielding occurience". After the short "start stage" assumed elastic the sample yields thus,
that the yield locus is in the first yield stage the exponent function. In the second yield
stage, which ends with the failure of the sample, the yield locus is the ellipse. On the
basis of both yield locus functions is arrived at a result that the relationship eg-q can be
during the undrained shearing to approximate with the same simple hyberbola from the beginning
of the shearing (stage) to the failure of the sample. 1In the paper dealt with the clay sample
is a soft postglacial clay. The sample is on purpose overstressed isotropically before the

undrained shearing.

THE BASIC ASSUMPTIONS

The sample is assumed to be and to remain
isotropic and homogenous. It, further, is
assumed that the volume change occurs
according to the equation (1) (Fig. 1a).
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6€V is the total volume change. 653 is the
elastic one and 565 is the plastic onej; in
the undrained shearing 6e, = 0. It is
assumed that Ge: >0 and 6:5 = 0 between the
points A and B (Fig. 2) of the stress path,
whereas between the points B and D of stress

path 8et = 0.
ei is the elastic shear strain and sg is the

plastic one. &p is the change in mean
principal stress.

Provided the soil stable in the sense
defined by Drucker (1959) then the strain-
rate vector expressed in. terms of only the
plastic components of strain §eg and e
must be normal to the yield locus. This
"normality condition" gives:
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q = o"—c‘3 is the deviator stress and p is
the mean pfincipal stress. Combining equa-
tions (1) and (2) and taking into account
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Fig. 1 Relationship between p, cé and void
ratio
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Fig. 2 Undrained isotropically consolidated triaxial test.

The soil tested: postglacial clay, W

that in the undrained shearing §e, = 0, is
. v
obtained:

E =§—§; i mep[g%] o

E is the tangent modulus on €574 space

STRESS PATH, YIELD LOCUS AND DEFORMATION
FUNCTIONS

In Fig. 2 have been shown three typical
stress paths of the overconsolidated (or
overstressed) clay in the undrained
triaxial compression test. The stress path
is devided into three parts AB, BC and CD.
At the space AB the inclication of stress
path is 3:1, the same in the undrained
compression test. The behaviour of the
sample at this stage can be to consider
elastic. At the space BC it begins into the
overstressed sample to develope the pore
pressure and into its deformations also the
plastic component obviously come along. At
the space CD the sample can be to find
yielding plastically. Next is examined the
behaviour of the sample at the space BC of
the stress path. According to notes of

Fig. 3 is
1
Po ¥ 39 = P *u, tuy
Po = Uy * P J S 2]

The component u_ of the pore pressure is
assumed to develope proportionally to "the
rest of the shear stress mobilization
degree", that is to say:
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From the equation (5) is obtained by
integrating (if u =0, when g=0):
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Stress path and yield locus.
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Stress path ABCD has been devided
into three spaces AB, BC and CD.

At the space AB the sample behaves
elastically. At the space BC the
stress path joins the exponential
yield locus and at the space CD

it joins the elliptical yield locus.

uaD)
q = qg 1 - exp —(75; L. .. .. .(B)

On the basis of Fig. 4 can be found that the
curve of equation (6) joins the points of
observations, when to qg is used the
theoretical value q.. >q., when qg 18 the
"observed" deviator” “stress at failure.

Fig. 3
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Fig. 4 Undrained triaxial test. Relation-
ship between pore pressure (ua) and
the rest of the shear stress
mobilization degree (1—q/qf).

If it is assumed that the fully saturated
sample is at the point B of stress path in
the elastic condition, is obtained the
approximate value of the coefficient D for
equations (5) and (6), as follows:

B is the pore pressure coefficient of the
fully saturated sample (Skempton 1954).

If the stress path can be to interpret the
yield locus between B and C, is got on the
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basis of the equation (3) and (5)
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1/a = E, is initial tangent modulus,
1/b = Q5”5 is the theoretical deviator
stress at failure

The equation (8) presents the simple hyber-
bola, which has been in several connections
stated to be suited to the approximating for
the relationship €_-q [among others Botkin
(1939), Kondner and Zelasko (1963), Korhonen
(1972), Duncan and Chang (1970), Domaschuk
and Wade (1969) ] On the basis of Fig. &
can be stated that the equation (8) is also
in this case approximately valid. It is
true, in Fig. 5 the curve of the equation
(8b) has been presented in "the linear shape"-

As earlier stated the deformation of the
sample at the space C and D of the stress
path is plastic. The yield locus usually
joins completely to the stress path (Fig. 2).
The yield locus can be approximated with the
ellipse (9), which Burland (1965) has derived
on the basis of the energy balance for the
sample.
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Qs is the deviator stress at the failure and

p¢ 1s the mean principal stress at the same
moment

When into the equation (3) is set the value
dq/dp from the equation (9b) is got:
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Fig. 5 Hyberbola q = e€/a + be. The line
is straight according to the
coordinate of figure.

Because it is in question the undrained
compression test, where the total volume of
the sample does not change (at least theo-
retically) during the shearing, the value
m, probably stays unchangeable in the
equation (10). Thus is obtained:

q/q,

Fig. 6 The curve of constitutive equation
(11), correspond to ellipse yield
locus, joins the curve of the hyber-
bolic, constitutive equation (8a)
at the space q/q;=0,5 - 1,0.
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In the Fig. 6 has been drawn the curve of
the equation (11) with the values: qF/pE =
0,80 and po/2p = 0,87. On the basis or
figure can be ;ound that the curve of the
equation (11) nearly joins the curve of the
equation (8a), when q/q.> 0,5. Thus can be
found that the relationsShip €_-q can be
approximated with the simple hyberbola (8b)
from the start of the shearing stage in the
undrained triaxial compression test up to
the failure of the sample. It is also
evident that the sample deforms at the space
BCD (Fig. 2) of the stress path mainly
plastically and that the stress path joins
the yield locus at above-mentioned space.
The yield locus can be to approximate with
equations (6) and (%a). As before mentioned
Burland (1965) has derived the equation (9a)
on the basis of the energy balance for the
sample during the shearing. It is possible
that can be derived the energy balance
equation for the yield locus (6).
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