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SYNOPSIS. Physical reasons of some mechanical phenomena are proposed for Z.M,bentonite and for 

some natural claye. Attractive /PA/ and repulsive /pp/ long-range particle interaction pressu­

res are calculated and compared with the measured stress values. At high w.c. /W ■> W , Pd'*“Pa *
i .« , , l ' * P

dispersed system/: when u=0, ^ ¿C=PR; when bg=0, PR"=-u and =Pr« At l°w w.c. A’K W  ,

"Pa^Pr * flocculated system/ interparticle contacts unevitably develop and they carry pert of

applied pressure: when u=0, *j- S^Pp i when ^=0, Pr>”u anc* "^3/f *-PA • T^e conc*ition of

-Pa"Pd is fullfilled at w.c. about W /hem was about lkp/cm^ and half the interparticle di- k p c
stance ds35A/. During consolidation and/or shearing process average particle thickness may 

vary as the function of stress applied.

INTRODUCTION. The interaction through a thin 

/rigid/ layer of water is usually assumed to 

be the cause of true cohesion. Here this wa­

ter layer is supposed to be of pronounced 

thickness /2d=50ft to 100R,diffuse layer,non- 

-rigid/ and the long-range interactions /at­

tractive, pA, and repulsive, pR/ are assum­

ed as the reason of the shear strength.

In previous study of this author the compa­

rison of estimated long-range interactions, 

pp and pA, with the measured shear strength 

indicated that either both of them or only 

one of them may be the cause of clay stren­

gth, This problem needed a more detailed re­

search and explanation.

The diffuse layer repulsion pressure, pR, 

was considered in detail by BOUT and MILLER 

/1955/ and BOLT /1956/, A thorough study of 

London-van der Walls interaction pressure, 

pA, was performed /STI=PK0WSKA, 1970, 1975b/. 

The water sorption test /WST/ was elaborated, 

permitting the determination of crystal pha­

se water /w^/p/po“0,95 ; 200°C//, of the ex­

ternal specific surface, S, and of other pro­

perties /estimation of CEC, montmorillonite,

M, and kaolinite, Kl, content indexes, par­

ticle thickness, S/. The eventual interaggre­

gate water, W a * may also be estimated and 

half the interparticle distance, d, may be 

obtained for the given w.c. /STIjPKOWSKA 

1973a and b, 1975b, 1976/:

3 J

/heref =1.Og/cm / is the density of free 

liquid water/.

The knowledge of this parameter enables the 

estimation of pR end pA for the investigated 

clay-water system.

Thermodynamic considerations of the mechani­

cal processes in clays Indicate that the de­

creased potential energy, dV^O, may be dissi­

pated in form of heat : dQ = -dVR in pure tension 

and dO=-dVA in pure compression /1975a,1976/.

The theoretical micromechanism of the shear­

ing process presented herein is supported by 

some check experiments, performed on 2.M.ben­

tonite and on some natural clay samples /M.

Ill, partly interstratified, with possible 

Chi and/or Kl admixtures/. The properties of
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the Investigated samples are presented in de­

tail elsewhere. Some tests were performed on 

Sedlec kaolin but their interpretation is not 

complete as yet.

ELEMENTS OF CLAY MICROSTRUCTURE. Crystallite 

/particle/ is assumed as the smallest elemen- 

tary component of clay structure. XRD study, 

WS Test end energetic considerations indicate 

the following: the crystallite of 2.M.bento­

nite is composed of several sheets of mont- 

morillonite /plus probably one mice sheet/ of 

a thickness of 10ft each sheet. Number of she­

ets per particle /Nr/ varies between 5 and 

8. On the external surface and in the inter­

sheet space there are three-molecular water 

layers present, of the thickness of 9& to 

loS each. The total thickness 6 of a crystal­

lite is thus ~I00R /Nr=5/ to~160fl /Nr=B/.

The external specific surface, S, varies be­

tween ~160m2/g /Nr=5/ and~100m2/g /Nr«8/.

In certain natural clay /H.K./ containing

little or no quartz, (T measured by XRO and

WS Test was 200& to 35oft and the correspon- 
__ 2 

ding values of S were 65 to 25m /g, In clays

from some other localities the particle thic­

kness (5* measured was 150& to 300& /D.clay/, 

200& to 2208 /Bydgoszcz clay/, 700& to 800^ 

/B.clay, from WST/.

Clay crystallites are arranged parallel to 

each other /due to diffuse layer repulsion, 

pR/, forming domains or tactoids. The mutual 

distance depends on w.c. and it may vary /Z.

M.bentonite/ between ~14o8 at liquid limit 

and ~70& at plastic limit, W^, around which 

value the repulsion equals attraction. In 

the case of absence of interparticle links and 

of presence of bivalent exchangeable cations 

/ 5=1008 to 14oR/:

at W=W and d=7oS, pR = -pA /2/

Below this w.c. /attraction exceeding repul­

sion/ interparticle bonds develop either due 

to ionic lattice attraction between sheets 

curled at the crystallite edges /montmorillo- 

nite/ or due to crystallite reorientation and 

®dge-to-face contacts probable in kaolinite. 

These bonds impede further decrease in inter­

particle distance /with load increase/ as the

bending strength of crystallites is much hig­

her than pR. Unbending of crystallites after 

unloading may influence the suction measured

/u < 0/-

Tomeins /tactoids/ in random mutual orienta­

tion form aggregates /peds/, of the size which 

is measured as grain size. In natural clays 

interaggregate water, maY occur, in Z.

'!.bentonite /f-.C./ ^M-study and cgilculavS on 

result indicate that Wmac=0*

For a group of preconsolidated natural clay 

samples from a given locality this value can 

be estimated from WS Test, i.e. from the in­

tercept of the regression line /tranaformed 

Eq. 1/:

w - w. = w + d 5 Z3/h mac av

In highly O.C. clay /e.g. due to glacier/,d

may be assumed as close to an average value,

d • The reqression line calculated for 11av 3
samples of B.clay /mainly from the depth ex­

ceeding 20 m/ was:

Wf - IVh = 4.64 + 0.285 S/%/ r^O.9795 /3a/

indicating W * 4.64% and d̂  , * 28.5^.3 mac av

MICROMECHANISM OF THE SHEARING PROCESS. Iso­

tropic consolidation of 2.M.bentonite from 

w.c. near to the liquid limit WQ21 100%/6q=0.25 

to 5.0kp/cm2/ was performed in Norwegian type 

trlaxlal test equipment. Samples were sheared 

after unloading to 63=0 with pore water pres­

sure, u, measurement /Plexi null device/ at a 

constant strain rate of 1.6  mm/hour.

The lines in Fig. 1 represent the calculated 

values of Pp and pA for concsntretion range 

of 10” 3 to 10" n̂ and particle thickness range, 

cT=ioo£ to 140ft /most probable values in in­

vestigated bentonite/. The values of pR are 

approximately valid also for natural clays; 

usually their cf and-pA values are higher.

I."Dispersed" structure: pR > -PA* W>W^, d>3sK 

6c4 1kp/cm2. If the initial w.c. ie high 

enough, 6C is carried mainly by pR and after 

termination of the consolidation process 

/pure compression/:

N.C. /u=0/ \  Sc = PR /4/

The decreased potential energy of attraction 

ie dissipated in form of heat /1975a, 1976/:
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- dVA = dQA / 5 /

A f t e r  u n d r a i n e d  u n l o a d i n g  /  6 ^ = 0 / :

PR = - u  / 6/

E x p e r i m e n t a l l y  m e a e u r e d  s u c t i o n  v a l u e s  / F i g . l /  

a r e  c l o s e  t o t h e  c a l c u l a t e d  p R v a l u e s .  S m a l l  

d i f f e r e n c e s  may be due t o  pA i m p e d i n g  r e v e r ­

s i b l e  u n l o a d i n g ,  t o  u n b e n d i n g  o f  i n t e r p a r t i c ­

l e  l i n k s  a n d  t o  e x p e r i m e n t a l  a n d / o r  e s t i m a ­

t i o n  e r r o r .

The  e h e a r i n g  p r o c e s s  may be p r e s e n t e d  h e r e  as 

p u r e  c o m p r e s s i o n  / d d  < 0 / .  W o rk  i s  p e r f o r m e d  

o n l y  when  d e c r e e s i n g  t h e  i n t e r p a r t i c l e  d i s t a n c e

Fig 1

no w o r k  i s  don e  when t h e  p a r t i c l e s  a r e  d i s p l a ­

c e d  p a r a l l e l  t o  e a c h  o t h e r  / t h e  p o t e n t i a l  

g r a d i e n t  i n  t h i s  d i r e c t i o n  e q u a l s  z e r o / .  W o rk  

o f  e x t e r n a l  f o r c e s :

dw = 6d d ed n /

c a u s e s  a c o r r e s p o n d i n g  c h a n g e  i n  p o t e n t i a l  

e n e r g y  o f  r e p u l s i o n :

~dVR = PRdd /0/

w h e re  d 6̂  = 2 dd f  O / 9/

When p a r t i c l e  o r i e n t a t i o n  i s  r a n d o m ,  when / 7 /

e q u a l s  / 9 /  an d  E q u a t i o n  / 5 /  i s  t r u e ,  t h i s  l e ­

ads  t o  t h e  g e n e r a l  e x p r e s s i o n  o f  E g ,  / 4 / .

? / 6 l  -  V f  ■ V f  ■ PR / 1Q/

T h i s  was m e a s u r e d  i n  Z , M . b e n t o n i t e  / F i g . l /  a t  

6C < 1 . 0 k p / c m 2 .  S h e a r e d  s a m p le s  f a i l e d  m a i n l y  

b y  b u l g i n g .

R e m o u ld e d  N a - b e n t o n i t e  an d  / N e + C a / - b e n t o n i t e , 

i n d i c a t i n g  h i g h  p R v a l u e s ,  b e h a v e d  i n  q u i c k  

t r i a x i a l  c o m p r e e s i o n  i n  a c c o r d a n c e  w i t h  t h e  

a b o v e  p r e s e n t a t i o n  / F i g .  2 / .

In unconfined compression / 6̂ =0/ :

I I . " F l o c c u l a t e d "  s t r u c t u r e :  - p A > p R , W < W p ,  

d < 3 5 & ,  ^ c > 2 k p / c m .  H e re  a p a r t  o f  t h e  c o n s o ­

l i d a t i o n  p r e s s u r e  i s  c a r r i e d  b y  t h e  s o i l  s k e ­

l e t o n  a n d  o n l y  t h e  r e s t  o f  i t  i s  c a r r i e d  b y  p R . 

T h u s  a t  N . C . / u = 0 /  |  6C »  p R / l l /

On u n l o a d i n g  i n  u n d r a i n e d  c o n d i t i o n  :

63 =o - u  pR / 12/

The  s w e l l i n g  o f  t h e  s a m p le  i n  d r a i n e d  c o n d i ­

t i o n  i s  l i m i t e d  b o t h  by  t h e  a t t r a c t i v e  p r e e s u -

r e  pA / e x c e e d i n g  r e p u l s i o n  pR/  a n d  b y  t h e  i n -  

t e r p a r t i c l e  l i n k s .  F i n a l  w . c .  c a n n o t  e x c e e d  

Wp and  i n  O . C . b e n t o n i t e  / Z . M , /  i t  a c t u a l l y  

d i d  n o t .

The  s h e a r i n g  p r o c e s s  i n  t h i s  w . c .  r a n g e  may 

be c o n s i d e r e d  as p u r e  t e n s i o n  /dd>0/ i n  a n a ­

l o g y  t o  t h e  c o m p r e s s i o n  p r o c e s s .

H e a t  d i s s i p a t i n g  i n  t h i s  p r o c e s s  i s  p a r t l y  due  

t o  a d e c r e a s e  i n  p o t e n t i a l  e n e r g y  o f  r e p u l s i o n

Flocc" tDisp
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-dVR = dQR /la/

and partly due to crystallite deformation.

Work of external forcos /l/ causes change in 

the potential energy of attraction:

-dVA = PA dd /14/

Assuming /7/=/14/ and /9/

| / 6i  -  63 / f  = - p A / 1 5 /

This was approximately observed in 2.M.bento­

nite samples in unconfined compression 

see Fig.l, and in triaxial compression of N#C. 

and O.C, samples /results will be presented 

elsewhere/. At failure the sheared samples mo­

stly indicated a distinct shear plane.

Remoulded Mg-, Ca-, Fe-, Al, and H- bentonites 

behaved in accordance with this presentation 

/see Fig. 3/,

Perfect correlation between the theoretically 

calculated forces and the measured shear stren­

gth was obtained, assuming a stepwise increa­

se in external specific surface, S, /decrease 

in Nr/ with the increase in 6c and/or shear 

etrength. Though the ionic lattice attraction 

has a very high component perpendicular to the 

sheet face, its component parallel to the she­

et face is zero and creep phenomenon is proba­

ble. The values of Nr and S assumed in calcu­

lation were equal to values determined by XRD 

/particle thickness/ for samples oriented 

from a slurry and for powder samples /VVS Test 

gave a good check/. The values assumed were:

(5 < l k p / c m 2 N r = 6 . 5  o r  7 S = 1 2 4 . 6  o r  118m2 / g
2 2

=lkp/cm «5.5 or 6 »144 or 137 m /g
2 2

=2kp/cm »5 or 5.5 =156 or 144 m /g

> 2kp/cm^ *5 =156 m2/g

A unique relation was obtained between the 

shear strength and the interparticle distance 

2d for all the investigated 2#M.bentonite sam­

ples /N.C.,O.C., remoulded and statically com­

pacted/. Similar results were obtained for a 

series of stiff H.K. clay samples, preconso­

lidated by a glacier /1975b/. Interparticle 

distance was estimated by WS Test. The avera­
ge value of calculated therefrom -pA was 0.74 

kp/cm . The average value of shear strength
2

measured was 0.71kp/cm .

The following regression lines for U.K.clay 

samples were calculated:

1 /  %/6i - 63 / f = - 0 . 0 5 2 2  d f + 2 . 4 1 1  / k p / c m 2 /

rxy = “0.5781 /16/

314

2 /  | / 6 1 - S 3 / f = 1 . 0 4 3  [ - p A/ ( f = 3 0 0 a / ] +0 . 0 0 4

/ k p / c m 2 /  r x y  = 0 . 7 9 8 0  / 1 7 /

Numerical value of correlation coefficient of 

Eq./17/, as compared to that of Eq,/16/, indi­

cates that pA ie responsible for the shear 

strength.

B.clay from the depth of 2 to 11.5m, sheared 

at 63=1 to 2kp/cm2, indicated shear strength 

of 1.52 to 2.10kp/cm2, where.'as the average es­

timated theoretical value was -pA=l.54kp/cm2 

/<f=700S, d=28 ,58, eee Eq. 3a/.

CONCLUSIONS. In saturated swelling /montmorli- 

lonitic/ clays, indicating no cementation end 

no non-clay mineral admixtures:

1. The reason of the shear etrength is:

a. London-ven der Waals attraction pA 
if _pA > pR and W < w

b. diffuse layer repulsion pR 

i f  p R > - P A a n d  V7 > wp

2. Plastic limit, W , is close to w.c. where
P

attraction equals repulsion.

3. Increase in stress applied may cause a de­

crease in average particle thickness end 

an increase in average shear strength 

/shear plane passing through crystallite 

parallel to its surface/.

These conclusions were drawn for 2.M.bentoni­

te end Polish natural clays and they should 

be checked for other types of soils.
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