INTERNATIONAL SOCIETY FOR SOIL MECHANICS AND GEOTECHNICAL ENGINEERING

This paper was downloaded from the Online Library of the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE). The library is available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands of papers published under the Auspices of the ISSMGE and maintained by the Innovation and Development Committee of ISSMGE.

Coefficients of Earth Lateral Pressure

Coefficients de Pression Latérale du Sol

P.I.YAKOVLEV Ass. Prof., Institute of Marine Engineers, Odessa, U.S.S.R.

SYNOPSIS The problem of defining active and passive earth pressures on walls with broken back side and the problem of hearing capacity of a structure with a deepened foundation are solved on the basis of a safe stress state theory of a loose medium suggested by V.V. Sokolovsky and S.S. Golushkevich. For convenience, the solution is obtained in an analytical form as a function of dimensionless coefficients of active and passive earth pressures and coefficients of bearing capacity of a foundation.

1. Slip surfaces for active earth pressure are shown in Fig.1. At this:

$$\theta_{1} = \frac{1}{2} \left[\arccos \frac{\sin(\beta + \omega)}{\sin \varphi} - \varphi + \beta - \omega \right],$$

$$\xi = \frac{1}{2} \left(\frac{\pi}{2} + \delta - \varphi - \arcsin \frac{\sin \delta}{\sin \varphi} \right);$$

$$\theta = \theta_{1} - d_{1} - \xi; \quad \theta' = d_{1} - d_{2};$$

$$\psi = \xi + \varphi + \arctan \left[\frac{\exp(-\theta t_{3} \varphi) - \cos \theta}{\sin \theta} \right];$$

$$\psi' = \xi + \varphi + \arctan \left[\frac{\exp(-\theta t_{3} \varphi) - \cos \theta}{\sin \theta} \right].$$

To determine the pressure on the upper section of AB wall, previously developed solutions for retaining walls having plane back sides are used (Yakovlev, 1964; 1975). The resultant pressure, E2, on low section of the wall BN can be determined graphically, by successive construction of force polygons for the regions EFDD', DD'C'C, CC'B'B, BB'M and BMN, or analytically:

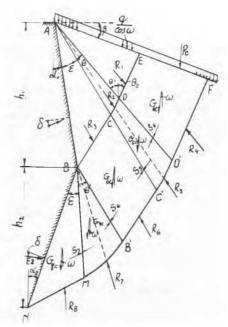


Fig.1 Slip surface of a broken back side wall in case of active earth pressure

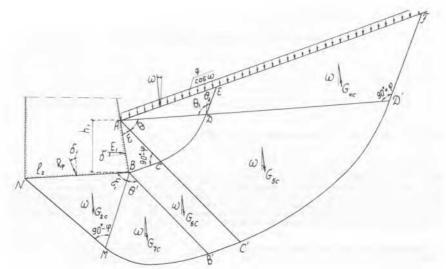


Fig. 2 Slip surfaces of deeply laid structures having inclined foundation and inclined earth surface before the structure

The coefficients of active earth pressure from backfill, $\xi_{\gamma 2}$, from backfill surcharge $\xi_{-4,2}$ as well as K value are functions of Υ , δ . These values are obtained in a closed form, the suggestions are made as to working out the epure of earth pressure on a wall. The solution can be also applied for the case when δ (in section AB) does not equal δ 4 (in section BN). The above parameters are as follows: Υ - angle of internal friction; ω = arctg K_c (K_c - seismic factor); Ψ - angle between side AB and direction of force R_s ; Ψ ' - angle between side BM and direction of force force force R_s ; Φ - coefficient.

2. While determining passive earth pressure all the formulae of active earth pressure containing ω , φ , σ angles should be substituted having minus sign.

5. The problem of stability of a deeply laid structure having inclined foundation and inclined earth surface before the structure (Fig. 2) is analogous to the problem of passive earth pressure in case when angle A_2 is within the range $(-70^\circ) \div (-90^\circ)$. The same but slightly changed formulae are used for the solution of this problem (particularly, the signs of angle A_2 and of coefficient $\lambda = AB/BN$ are changed and A_2 and A_3 become coefficients of bearing capacity of a foundation).

In a particular case when there are no seismic effects, ω =0 should be introduced into all formulae.

Using the derived solution, the computer program has been developed and the coefficients to the following the control of the coefficients to the coefficients of the coefficients of the coefficients which enabled to quickly and accurately solve the problems connected with the determination of active and passive earth pressure upon the wall and evaluate the stability of structures subjected or not subjected to seismic effects.

Figs.1 and 2 illustrate the case of a continuous stressed state with Prandtl's zone. The author has analysed the cases of discontinuous stressed state and got continuous and discontinuous solutions for the structures with a plain side at broken earth surface contour before it.

REFERENCES

Yakovlev P.I. (1964), "Analytic Interpretation of S.S. Golushkevich's Problem Related to Earth Pressure on a Retaining Wall", "Stroitelnaya Mekhanika i Raschet Sooruzheniy", No.5, pp.22-27.

Yakovlev P.I. (1975), "Calculation of Active and Passive Earth Pressure Using the Safe Stress State Theory and Lateral Pressure Coefficients", Coll. "Osnovanija i Fundamenty", No.8, Kiev, pp. 154-160.