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SYNOPSIS A generalized limit equilibrium approach, based on variational calculus, is applied to slope stability 

calculations. The problem is defined as a search for the minimum value of the usual factor of safety with re­

spect to strength. No assumptions with respect to the shape of the failure line y(x), or the normal stress dis­

tribution along it o (x) are made or implied. Instead, the most dangerous combination of y(x) and c(x) is looked 

for. The method is exact in the sense that all equations of equilibrium are satisfied.

INTRODUCTION

There are numerous methods currently available for the 

stability analysis of plane slopes. Most are of the 

limiting equilibrium (L.E.) type. These methods dif­

fer from each other not in their fundamental approach, 

but rather in the simplifying assumptions used to ob­

tain solutions. It will be shown that these assump­

tions are not only arbitrary but also unnecessary. A 

general solution can be based on the L.E. approach 

using the concept of factor of safety, and the method 

of variational calculus.

FORMULATION OF THE PROBLEM

A mass of soil is considered to be in a state of L.E. 

if:

a) Coulomb's yield condition is satisfied along a 

potential slip surface y(x)

t (x) = c + a(x) tan .........................  (1)

where: t (x ) and a(x) are the distribution of tangen­

tial and normal stress along y(x); c and $ are the co­

hesion and friction angle respectively.

b) The equations of horizontal, vertical, and moment 

equilibrium are satisfied for the sliding mass 

/(xcosa-asina)d£=0 .............................  (2.1)

X2

/(xsina+acosa) dZ- f y (y-y) d x = 0 ...................(2.2)

I Xj

/[(xcosa-asina)y-(isina+ocosa)x] dH-
l

x2

/irx(y-y) d x = 0 ................................. (2.3)

X 1

where: tana is the slope of the potential slip surface, 

I  is the arc length along y(x),

Y is unit weight of soil,

xi, x2 are the end points of y(x) ,

y(x) is the slope surface (Fig. 1).

Fig. 1 Slope of uniform soil.

In general there are two ways by which a soil mass of 

a given geometry can be "brought" to a state of L.E.:

1) by increasing an externally applied load,

2) by adjusting its strength parameters.

The first possibility usually corresponds to a problem 

of bearing capacity, and has an obvious physical mean­

ing. The second one corresponds to "replacement" of 

the soil strength parameters by artificial ones c.tancfi 

for which a state of L.E. is realized.
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There are many possible ways by which the strength 

parameters can be adjusted in order to realize a state 

of L.E. It is customary, however, to adjust both 

parameters by a single factor F in the following man­

ner

c » c / F ..................................... (3.1)

tanij) = tan^/F............................... (3.2)

The quantity F required to bring a mass of soil to a 

state of L.E. depends on the choice of y(x) and a(x), 

and therefore is a functional. This functional is 

termed the safety - functional, to be distinguished 

from the factor of safety Fs of a given slope, which 

is the minimum value of F.

Fs = min F[y(x),o(x)] = F[y (x) , a (x) ] ........(4)
e e

where yg(x) and 0e(x) are the critical slip surface 

and critical normal stress distibution, respectively.

It is convenient to introduce the following non-di­

mensional quantities: N = c/yH, S = cr/yH, i|j=tan<t>,

Y = y/H, Y = y/H, X = x/H where H is the height of 

the slope. Substituting Eqs.(3) and (1) into Eqs.(2) 

and using the non-dimensional quantities defined 

above, the equations of L.E. reduce to the following

X2
/ [ (N + Si|)) - FSY'] dX = 0 .................  (5.1)

X2
f  [(N +  S^)Y' - F(Y-Y-S) ]  dX =  0 ............(5.2)

Xl

X2
f  [(N + St|j) (Y-Y1X) - F(S(X+Y1Y)-X(Y-Y)) ] dX = 0 (5.3) 

Xl

where Y' = dY/dX.

The problem of slope stability can than be stated as

follows: Find a pair of functions Y (X) and S (X)
e e

that realize the minimum value Fs (factor of safety) 

of the safety-functional F, such that the three equa­

tions of L.E. (Eqs.5) are satisfied. This problem 

will be solved using the method of variational calcu­

lus. Consequently ,the only restrictions placed on the

shape of the functions Y (X) and S (X) are those con- 
e e

cerned with continuity and differentiality. No other 

restrictions are needed for application of the method; 

nor are any called for by the nature of the problem.

All other L.E. methods contain some arbitrary assump­

tions with regards to Y (X) or S (X) or both. For 
e e

example the classical Taylor method is based on the

assumptions that Y (X) is a circular arc. In the 
e

slice methods that satisfy all conditions of equili­

brium (e.g. the Morgenstern - Price, or Janbu methods)

Y (X) is free of assumptions but S (X) is implied by 
e e
assumptions regarding the direction or line of action 

of the interslice forces. Similarly, in the variation­

al method presented by Garber (1973) Y^(X) is derived

but S (X) is implied by the assumption of a hypotheti- 
e

cal failure mechanism. Any assumption with respect to

Y (X) or S (X) must lead to an unconservative estimate 
e e
of Fs as compared to that obtained from the present 

approach since they search for min F over a narrow 

class of functions.

The only attempt, known to the authors,to investigate

slope stability without arbitrary assumptions on Y^(X)

or S (X) was performed by Kopacsy (1955, 1957, 1961) 
e

and recently reiterated by Chen and Snitbhan (1975).

In this attempt the minimization was done with respect 

to the weight of the sliding mass, rather than the 

safety-functional. The factor of safety was not de­

fined at all; consequently, the equations of L.E. as 

written by Kopacsy are valid for slopes on the verge 

of failure only. However, if it is known in advance 

that a slope is on the verge of failure, no analysis 

is called for. Therefore Kopacsy's presentation has 

little practical value. The present analysis was mo­

tivated by Kopacsy's analysis and overcomes the incon­

sistencies of his approach by introducing the factor 

of safety.

MATHEMATICAL ANALYSIS

A direct application of standard variational techniques 

to the problem as presented in this work is impossible 

since the quantity to be minimized, F, appears in all 

three Eqs.(5). To overcome this difficulty, Eq. (5.1) 

is rewritten as 

X2
/ (N + Ŝ ) dX 
X]

F = .............. ..............................(6)
X2
/ SY' dX

Xl

The problem can therefore be considered as one of 

finding the minimum value of F given by Eq.(6), sub­

ject to the integral constraints Eqs. (5.2) and (5.3). 

Eqs.(5.2) or (5.3) could have been used for the ex­

pression of F and the remaining two equilibrium equ­

ations used as constraints without affecting the final 

results. This is the consequence of the reciprocity
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principle of variational calculus (Bolza;1973, p.228).

It can be shown (Petrov;1968, p.144) that the functions

Y (X) and S (X) realizing the minimum ratio of the two 
e e
integrals in Eq.(6) are the same as those that realize 

the minimum value of the standard functional R, defin­

ed by
X2

R = / [ (N + Sip) - FsSY' ] d X ................... (7)

Xl

subject to the condition min R = 0.

It is easy to see that this condition is equivalent to 

the satisfaction of the equation for horizontal equi­

librium for the critical pair Y (X) and S (X). The
e e

remaining two equations of equilibrium(Eqs.(5.2) and

(5.3);must be valid for every pair of Y(X) and S(X),

including the critical pair Y (X) and S (X). There-
e e

fore the original problem can be transformed to the 

following standard isoperimetric problem of the cal­

culus of variations: Find the minimum value of the 

functional R,Eq. (7) ̂ ubject to the following set of 

integral constraints 

X2
/ [(N + S ip) - FsS Y ' ] dX = 0 ................. (8.1)
v e e e
M

X2
/ [ (N + S ip)Y' -  Fs (Y-Y -S )] dX = 0 ..........(8.2)
v e e e e
X1

x2
/ [(N + S iJj) (Y -Y'X) - Fs(S (X+Y'Y )-X(Y-Y ))] dX = 0 
v e e e  e e e  e
Xl (8.3)

The solution to this problem can be obtained using the 

method of Lagrange's undetermined multipliers. Con­

sistent with this method an auxiliary function G is in­

troduced as follows

G = [(N + S iJj) - FsS Y'] + X,[(N + S 'Jj)Y' - Fs (Y-Y - 
e e e e e e

S )] + A,[(N + S <p)(Y -Y'X) - Fs(S (X+Y'Y )-X(Y-Y ))] 
e  ̂ e e e  e e e  e

(9)

where X1,^2 are the Lagrangefs multipliers.

It can be shown (Petrov;1968, p.40) that the function 

G may be multiplied by a constant without affecting 

the final results. Thistand the fact that the func­

tions under the integrals in Eqs.(7) and (8.1) are 

similar, make it possible to use only two Lagrange 

multipliers, although there are three integral con­

straints.

The functions Y (X) and S (X) that constitute the sol- 
e e

u t i o n  t o  t he  p r o b l e m a r e  o b t a i n e d  f r o m Eu l e r ' s  d i f f e r ­

ential equations for the function G. The Euler dif­

ferential equations are 

d— raG_| _ _
dxLaS'J 3S .........................

(10.1)

• L ^ ]  ............................. (10.2)
dxLaY' 3Y

Since G is independent of S^ and dependent on S^ lin­

early, Eq . (9) , the first Euler equation,Eq.(10.1),is a

first order differential equation in Y only. Solv-
e

ing this equation, and substituting the result into 

the second Euler equation,Eq.(10.2),a first order dif­

ferential equation in S^ is obtained. The solutions

for Y and S obtained this way are 
e e

r^ = A exp(iJ;0/Fs)

Bexp (-2ijj0/Fs) -

B-Asin9-2N0/Fs

......................... (11.1)

AFs(3i)icos8+Fs sin8)exp(i)j0/Fs) N
2 2 

Fs + 9ip

(ip 4 0) 

U  = 0)

*

(11.2)

(11.3)

where r and 0 are polar coordinates that are related 

to the coordinates X and Y by the transformation

X = t - rcos0 = X - rcosE 
A 2 c

.(12.1)

Y = - 4 + rsinB = Y + rsin8................(12.2)

The constants A and B are constants of integration,

and (X ,Y ) is tt 
c c

system (Fig. 1).

and (X ,Y ) is the center of the polar coordinate 
c c

The general solution obtained, Eqs . (11), depends on

seven unknown constants: X , Y Fs, A, B, and 0i,
c c

02 which correspond to X], X2 . Therefore seven equa­

tions are required to find a particular solution.

These equations consist of the three integral equa- 
£

tions, Eqs.(8) , and four boundary conditions.

BOUNDARY CONDITIONS

The function Y^ has to satisfy the geometrical bound­

ary conditions

Ye(Xj) = YCXj)............................. (13.1)

Ye(X2) = Y(X2) ............................. (13.2)

Substituting the general solution,Eqs.(11) ,and the 

coordinate transformation,Eqs.(12),into the integral 

relations , Eqs.(8),it is possible to execute the 

integral operations so that these equations become 

algebraic.
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Using the transformation Eqs.(12) and the solution for 

r^.Eq.(11.1),it is possible to express these equations 

in terms of the seven basic unknowns mentioned previ­

ously. Two additional boundary conditions are still 

required. It would be convenient if at the end points

of Y , the values of the functions Y' and a were 
e e e

equal to those obtained graphically from Mohr circle 

and failure envelope. There are, however, four such 

conditions (two at each end point), and therefore it 

is impossible to satisfy them all. This limitation is 

inherent in the L.E. methods, since in all such meth­

ods equilibrium is satisfied only globally, for the 

whole sliding mass, but not at each point.

Instead of the physical boundary conditions, one may 

choose the points Xi and X2 in such a way as to mini­

mize Fs. This is consistent with the variational ap­

proach that seeks a lower bound on Fs. In order to 

achieve the critical selection of Xj and X2 , a set of 

variational boundary conditions, known as the trans- 

versarity conditions has to be satisfied. These con­

ditions are written as (Elsgolc;1962, p.75)

.(14)Cr _Y > -ÜÇ _s t , 
(G Ye 3Y1 e 3S'} 

e e

ty + 3G ¿¡X + w .

x=x.
1

«  + n .e 3S '
X=X.

6S = 0 
e

X=X.

where X^ is Xj or X2 and 6 is the variational operator. 

For the present problem this equation becomes 

N(Y(Xi)+tan0i)+S (61) [Y' (Xj) (iJj-Fs tan0j)+(Fs+i()tan0i) ]=0

(15.1)

N(Y(X2)+tan02)+Se(02) [Y' (X2) ( i i -Fs tan02)+(Fs+iiitan02) ]=0

(15.2)

These two equations complete the system of equations 

required for specification of a particular solution to 

the problem. The seven equations are the three integ­

ral relations,Eqs.(8), two geometrical boundary condi­

tions, Eqs . (13) , and two variational boundary conditions, 

Eqs.(15). By proper substitution it is possible to re­

duce this system of seven equations in seven unknowns 

to four non-linear simultaneous algebraic-transcenden­

tal equations in four unknowns. This reduced system 

must be solved numerically, possibly using a computer.

SUMMARY

A generalized limit equilibrium approach is applied to 

the evaluation of the stability of slopes. It is 

shown that the critical slope surface has the form of 

log-spiral, as in the case using limit plasticity.

The critical form of the normal stress distribution 

is derived rather than assumed as is usually done in

L.E. calculations. The solution of the problem re­

duces to the solution of four simultaneous equations. 

The approach does not utilize any constitutive equa­

tion; instead the most conservative estimate of Fs, 

consistent with Coulomb's yield condition and overall 

equilibrium is obtained.
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