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The Calculus of Variations and the Stability of Slopes

Le Calcul des Variations et la Stabilite des Talus

E.CASTILLO and
J.REVILLA Dept.of Mathematics, School of Civil Engineers, Univ. of Santander, Spain

SYNOPSIS.- This work shows the possibilities of application of the calculus of variations to
slope stability analysis.After generalizing the classical Euler equations and the natural and
transversality conditions to functionals defined as a quotient of integrals,the determination
of the critical sliding line(the one giving the minimun safety factor)is performed very easi-
ly. The mathematical statement of the slope stability problem is established with generality
and then applied to the case of the Janbu”s method obtaining very interesting results for the
case of an homogeneous soil and compiling adimensional charts which allow the stability num-
ber to be obtained as a function of the geometry of the slope and the strength characteris-
tics of the soil. The method is later generalized to the case of several layers,for which ma-
thematical reasors lead to sliding lines partially coincident with the boundary line between
layers.In this case the calculus of variations gives also the solution as it is shown with se
veral examples. =

T.- INTRODUCTION

Methods used at the present time for anali- of & slope can be expressed (figure 1) as:

zing the stability of slopes consist of de-
terminig the factors of safety associated P~ x=Xp f <
with a series of sliding lines previously de - -

fined by the engineer and then obtaining the |

minimun of these,which is taken as the safe- "';/’{

ty factor of the slope. But due to the fact
that this trial procedure does not cover all
the possible curves it is obvious that other Xz
lines could lead to a smaller factor of safe
ty.However since the number of curves which
are actually used in the trial is very high,
it can be hoped that the difference between
the absolute minimum and the computed one ¥ 1
would be small enough not to give serious |
consequences. X=Xy ¢ =in-2

To summarize,the analysis of stability of a %= Xn X=X
slope by limiting equilibrium criteria redu- :
ces to the search for the critical slip line Fig.
in the sense of giving the minimum safety

factor,and to the calculation of this value.

Analitical definition of the slope

n X

The common procedure of searching for this b | B

line,which has been previously described,is A Fi(x,yi,yi)dx

arduous and becomes terribly cumbersome =1 %is 3

owing the high number of calculations actual F = o (1

ly involved. For these and other reason it j;_ ! B

would be very useful to have a method avai- 2 ) Gi(x,y.,y:)dx

lable to provide this sliding line Without 2 X

the above shortcomings.

The method presented here meets these requi- where Yi=Yi(X).(i=1,2.---,n) represents the
rements allowing a solution of the problem sliding curve in the interval (x;,x;-q1),and
by the use of the calculus of variations the the functions F; and G; are related with the
ory. The results obtained Show the method to shear strength and the actual shear stress

be promising. of the soil respectively.

Consequently,the determination of the safe-
ty factor of a given slope coincides with
the problem of determining the minimum va-

2.- MATHEMATICAL BACKGROUND

The functional defining the factor of safety
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lue which takes functional(1).

The analysis of this kind of functional is -
not generally studied in the existent litera
ture then, before applying the theory of the
Calculus of Variations to this case, a gene-
ralization has been done by the authors with
the help of the differentiable applications
theory.

It can be proved that the EULER's equations
associated tothis new problem are:

JF; d dF,
- ( | )
ayi dx ay} )
. BGi d ( 3°; : (i=1,2,...n) (2)

ayi dx ay;

and in consequence the curve which gives the

minimun factor of safety will have to satis-
fy this equation.
In order to have a well defined problem, or,

in other words, a problem with a unique solu
tion, more conditions must be given, because
the solution of equation (2) depends on seve
ral arbitrary constants.
From the Calculus of Variations theory it is
also known that, in order to obtain an extre
me for the functional (1) the following natu
ral boundary conditions must be satisfied at
the points x. where there is a change in the
analytical expresion of the profile of the -
slope (f,(x)). These equations are:

aF; F.BGJ =3Fi+l_F ?Gi+d (3)

CRTR T T |

=X, =x;

In addition the transversality conditions -
must be satisfied in x, and x and at the =
points, x., with a change of Stratus. In -
this case"transversality equations become:

dF, D6,
(Fy=FG )+ (fi-y])( - -) =0 (ha)
2y} ER%
X=X0
( )+ ( )(DF“ BG“) (4b)
F -FG )+ (f'-y! -F —— =0 b
n n n n i ]
ayrl ayh S5
SF . 26, "
- [ =t 2 | ~
(Fi-FG )+ (¢ yj)(ayr F ay-.) (ke)
J j x=x;
QF. A6 .
(Fj+1'FGj+1)+(?j+1'yj+1)(a “:+] sr—L2]
"5#1  Qy!
_]+] =
J

3.- APPLICATION TO THE JANBU'S METHOD

In order to clearly understand the ideas ex-
pressed in the previous paragraphs and to -
show power of the method it will be applied
to the Janbu's method.

In this case, the formula which provides the
factor of safety, F, corresponding to a gi-
ven sliding curve and neglecting shearing -
forces between slices is:

26

n
2 (c+ A tad) Ax; (1+19? 3,) (1+188t2 8y -
Fai=1 5

:E: [&vH tg/3£

i=1

where A W is the weigth of the i-th slice; -

Bi the inclinations of the sliding curve‘,Axl.

the width of the i-th slicey ¢ the cohesion,
¢ the angle of internal friction and ¥ the -
unit weigth of the soil. u

If the width of the slices reduce to zero the
following equations for Fi and Gi are obtai-
ned:

+(y.-f.)xtg 8] (1+y'?)
F;=[c kiR ‘ (6)
tg 6 . y;
1+ e
G,= X(yi = £4) ¥ (7)

3.1.- HOMOGENEOQUS SOIL

Let us consider an homogeneous soi](figure 2)

Fig. 2.- Analitical definition of a rectili-
near slope.

‘The functions defining the slope profile are:

f1 (x) =0 x>0
f, (x) = o -H, «x< 0 (8)
2 H] 1
fy (x) = -H x < -H,
Let us assume also a continuous sliding line:
Y (x;) = v, ; (x;) (0#i#n) (9)
which together with condition (3) gives:
vi (x) = vi_y (x)) (10)

at the points where there is not a change of
stratus.

Due to the tact that equations (2) are of se
cond order the number of equations and un--
knowns are as follows:



3) Deep sliding line (fiqure 3)

Transversality
and boundary

T ersality
Transversalily

and boundary \
Y

Continuity of the
sliding line and
its derivalive

Fig. 3.- Equations defining the problem
of a deep line

Equations

2.- Transversality conditions (points A and D)
2.- Boundary conditions (points A and D)

2.- Continuity of y; (points B and ()

2.- Continuity of y! (points B and C)

1.- Equation defining F (equation (1))
Unknowns

6.- Constans of integration
2.- Abscisses of A and D
1.- Safety factor F

b) Lines passing through the toe of the slope
(figure 4)

Continuity of the

g\r-jm; line ana
\ts derivative

Fig. .- Equations defining the problem of
a line passing through the toe

Equations

1.- Boundary condition (point B)
1.- Continuity of y: (point C)
1.- Continuity of yl (point C)
1.- Transversality (point D)

1.- Boundary condition (point D)

1.- Equation defining F (equation (1))

nknowns

U
.- Constants of integration
1.- Abscissa of the point D
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1.- Safety factor F
3.1.1.- SOIL WHITHOUT FRICTION

3.1.1.1.- Deep sliding line

The Euler equations in this case are:
2 ¢y
F=-—02 (i
¥ fi
I
which upon integration and taking into acco-
unt that

1,2,3) (11)

Fi (x) = £3 (x) = 0 (12)
leads to
Yy = B1 x + D Xgz X >0
= - X -
vy, = + B, x+D, 03x>-H, (13)
4NH
1
- -H
y3 B3x+D3 ]>xzx3
where
N = —S5 (14)

F K H
is the stability number.

Making use of the first 8 equations listed be
fore results

B] = B2 = -1

B3 =1

D, =D, = X (15)
D3 = -H1 = H - Xq

N = 1/4

and entering these values in equation (1) fi-
nally results:

-H. - 3H - 6x
p— 0 (16)
-8H1-12H -tho

The compatibility of this equation and N=1/4
leads to x0+m,which means a deep line.

3.1.1.2.- Sliding line passing through the
toe

An analogous procedure for this new case
leads to

s : R 3 12
x, U w7 \ O e, * 8
o 4
" - 1

2 2
3 - 3um, e\ (/K +3)2 4B (H/H,)

Figure 5 shows the value of x, as a function

of the inclination of the slope and figure 6,
the critical slip lines in adimensional form.
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Fig.5.-Values of x_, versus slope angle B
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Fig.6.-Critical slip lines in adimensional
form

3.1.2.- GENERAL SOIL

In this case the Euler equations are:

¥ F[ -Azy}3+A(2A2-1)y;2+A P oyl+ Q]

Y
|
2 3 i 3
(2CcA°-2¥A Ff, ZKAFFF+2C)+(2KA F+2XAF)yi
(i =1,2,3)
where
_tg é
A F
2
Pl= 3AR=STAT flh - A
?
Q=A-A‘f|!-f|!

which must be integrated numerically. The re

sults of this integration have been shown in
figure 7 where the stability number N is gi-
ven as a function of the inclination of the
slope and the adimensional parameter M.

M = Htgd
c
If the point representing the slope is in zo
ne |,the sliding 1ine is a deep line, and,
if in zone 11, the sliding line passes - =

through the toe of the slope

28
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Fig.7.- Stability number versus slope angle

Figure 8 is a comparison with Taylor results.
As it could be expected, the factors of safe
ty obtained by the variational method are -
smaller, and in some cases the difference is
large. Another important fact, for the case
of 6=0, is that the slip lines do not pass -
through the toe of the slope if the slope an
gle is not 90°, which is in disagreement -
with Taylor's results.

rp%&;u
05—~ % J T —
D H 1
+ | A8
020} A A N
e
msr—jy.—-—/ Pal . &
| leaos AT AT || —Taylor Method
I "ot = & > “‘ Variational
010+ r“ﬁtlf/“;—: +— Method
Rl 4/ 4/ Il {
| 1 o 1
00s— = —t 1 LT
1
| |
0 0 20 30 & S0 60 70 BO 97?;
Fig.8.- Comparison with Taylor results
3.2.- SLOPE WITH A HARD STRATUM BELOW THE

TOE

If there is a hard stratum below the toe of
the slope the sliding line will be partially
coincident with it (ficure 9).

If the angle of internal friction of the -
soil is zero it always exists a solution of
this type because the critical sliding line
is deep. For this case the expresion of the
safety factor becomes:

1
F,er+ F, dx+ dx+/ dx+ F dx
Xn 0 -H
F=—
*q "1
Gldx+ szx+ ulux+ 5
xﬂ 0 H
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where
Foo= C(1+y1?)
y (i=1,2, »5)
= - 1
Gpo= (yy=fidoyg
¥ ST e
H M//
D/H=1 N NN N=014)
o - D/H=2 \ \ J / N=017
D/H=4 / 0203
Fig.11.- Critical lines partially coincident
with a hard stratum
3.3.- CASE OF SEVERAL STRATA
The same procedure can be followed for the ca
se of several strata making use of the trans
versality conditions where there is a change
Fig.9.- Sliding line partially coincident - of strata.
with the boundary of a hard stratum
Making use of the following equations:
a) Euler equations
b) y.(x) =D 52
c) Transversality conditions in A and F
d) Natural boundary conditions in B and E i
e) Continuity of yi(x) in B and E e o
f) y'(x) = 0 in C and D 2
g) y(x) = D in C and D — A\’uj_ B S 2 v ar- e =
h) The definition of F (equation (1)) // ? y
The following results are obtained: - P : *
2. 16 . A e
(2H+H +4D) - (2H+H +4D)“- — H_ (5 +D) W
N 1 1 3 "1\ i
— 8 j 125
—_ H 123
34 (]
which shows N—>1/4 if D—=%e0 as it could be
expected.
Figure 10 shows the stability number as a Fig 12.- Example 1
function of the slope angle and the relative Figure 12 shows one example of horizontal -

depth of the hard stratum,
shows an example of sliding
pe. r.;j/:xﬁ,,i

and figure

025

024

10° 70 B0° 90°/3
Influence of a hard stratum
stability number

200 3P 40P 5@ &P

Fig.10.-

lines of this

11 =

h stratification. As it can be seen the two di
Y fferent kind of lines studied give relative
minima, but line 3 gives the absolute mini--
mun for the safety factor F.
15
///
Mt oA > L i
S < = 7 R D AT Ml
< \ 7 cmemvem gt
in the

13.~ Example 2

Fig
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Figure 13 shows other example similar to the
preceeding one but in this case the potency
of intermediate strata is not sufficient to

allow a free line to develope enterely betwe
en strata. It is interesting to observe the
concavity and convexity of the sliding lines

on the right and left sides respectively and
the changes in the first derivative at the

points Where a change of stratus exists. -
The concavity and convexity would be contra~
ry if the soil would have been strength in-

creasing instead of decreasing with depth.

=7 P= 40°Y=1.8

Fig. 14.- Example 3

Figure 14 shows one case of sthength increa
sing with depth. This fact leads to a unigue
sliding line shown in the figure.

Finally figures 15 and 16 show the effect of
a soft stratus in the stability of a slope.
Figure 15 shows the critical line for an ho
mogeneus soil having a safety factor of - -
1.04,and the figure 16 shows the same soil
with a soft layer, In this case two lines -
give a relative minimun for the safety fac
tor, line 1,with a value of 1.07 (greater
than 1.04 as it must be expected) and line

2 with a safety factor 0.91 which is the - -
factor of safety of the slope

Fig. 15.- Example 4.

30
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Fig. 16.- Example k.
L,- CONCLUSIONS
1.- The mathematical theory of the calculus

of variations allows a direct determination
of the critical slip line of a given slope.
Euler's equations together with the trans--
versality, continuity and boundary condi- -
tions are used in order to solve the pro- -
blem.

2.- The only assumption for the sliding line
used in the new method is that of been con-
tinuous.

3.- In the case of a slope with several stra
ta it is possible the existence of several -
relative minima. In some cases the sliding -

lines are partially coincident with the boun
dary between strata.

L.~ Application of the calculus of varia- =
tions to the Janbu's methods give excelents
results as it has been shown in the text.

5.- AKNOWLEDGEMENTS

The authors of the paper want to aknowledge
to Cesar Sagaseta his valious comments and
to the School of Civil Engineers of Santan-
der the help given in the paper.

6.- REFERENCES

CASTILLO, E. y REVILLA, J. (1975).- "El cé&l-
culo de variaciones y la estabilidad de talu
des', Revista del Laboratorio del Transporte
y Mecdnica del suelo, Marzo-Abril (Madrid).

FORRAY, M. (1968).- Variational Calculus in -
Science and Engineering, Mc Graw-Hill Compa
ny.

GELFAND, 1.M. and FOMIN, S.V.(1963).- Calcu-
lus of Variations. Prentice-Hall, Inc.

REVILLA, J.(1976).- C3lculo de variaciones -
aplicado a la estabilidad de taludes, Ph. D.
dissertation. Escuela de Ingenieros de Cami-
nos, Canales y Puertos de la Universidad de
Santander.



