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Modelling Soil Behaviour under Cyclic Loading

Un Modéle du Comportement du Sol Soumis a la Charge Cyclique

M.J.PENDER

Central Laboratories, Ministry of Works and Development, New Zealand

SYNOPSIS A comprehensive model has been developed to describe the stress-strain behaviour of

overconsolidated soil, Pender (1977). This paper is concerned with the extension of the model

to cover the response of soil to small strain cyclic loading. The model continues to be based
on the critical state theory of soil behaviour and the idea that a constitutive relation for a
work-hardening plastic material is appropriate for the calculation of the non-recoverable

strains.

Important objectives in the development of the model are (i) the minimization of the

number of parameters needed to characterise a particular soil, and (ii) that values for these

parameters should be obtainable from routine tests.

It is concluded that the variation of

apparent shear modulus and equivalent viscous damping ratio with cyclic strain amplitude can

be represented most effectively.
material.

INTRODUCTION

The behaviour of soil under cyclic loading
is of great importance in many aspects of
civil engineering, e.g. the response to
small strain amplitude cyclic loading such
as is of relevance to soil-structure inter-
action under earthquake loading.

Although mathematical models for the static
stress-strain behaviour of soil are becoming
increasingly common, as yet models for
cyclic behaviour are not so well developed.
The object of this paper is to investigate
the possibility of extending a model initi-
ally developed for the static behaviour of
overconsolidated soil, Pender (1973) and
(1977), to cyclic loading.

A convenient starting point for the model
for static behaviour was the idea that all
distortion is irrecoverable. The model
developed from this predicts that the app-
arent shear modulus at very small strain
amplitudes is very large, tending to infin-
ity as the strain amplitude tends to zero.
There is a large body of experimental evid-
ence showing that at very small strain
amplitudes (less than 1073%) soil exhibits
an elastic shear modulus, e.g. Richart (1975),
Seed and Idriss (1970), and Taylor and
Parton (1973). The magnitude of this shear
modulus depends on the density of the soil,
temperature, soil type, stress history etc.
It is most conveniently determined by the
measurement of the in situ shear wave velo-
city, Richart (1975). In this paper the
stress-strain model is extended to include
the small shear strain elastic behaviour.
It is then found possible to model the
behaviour of the apparent shear modulus and

The model requires five parameters to characterise a given

the equivalent viscous damping ratio over a

wide range of strain amplitudes. The number
of parameters needed to characterise a given
material increases from four (static behavi-
our) to five. Values for four of these five
parameters are determined from routine lab-

oratory tests in such a way that the effect

of sample disturbance is not critical.

The concept that the yield locus for the be-
haviour of overconsolidated materials is
reduced to a straight line and follows a
type of kinematic hardening (in that the
current yield locus is always attached to
the current stress point) provides a mechan-
ism for modelling reversed and repeated load
ing in a simple yet realistic manner. Pre-
sented in this paper is a model for small
strain amplitude cyclic loading developed
from a model for large strain static behavi-
our. Thus it is possible to look at a wide
range of soil behaviour from one viewpoint
rather than adopt one model and set of mater
ial parameters for static behaviour and a
different model and parameters for cyclic
behaviour. Furthermore the obvious economy
in the amount of data required to make these
calculations has important implications for
the practical application of the model.

OUTLINE OF THE STRESS-STRAIN MODEL FOR
OVERCONSOLIDATED SOIL

The following four subsections give a very
brief outline of the model as developed for
static loading with the conventional triax-
ial apparatus; detailed discussion is given
by Pender (1973) and (1977).
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(a)

(b)

(c)
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The model is based on the critical state
theory of soil behaviour. Critical
state concepts are explained by Schofield
and Wroth (1968). These concepts are
assumed to provide a valid idealisation
within which to interpret the failure
and prefailure behaviour of soil. This
idealisation assumes that when loaded,
soil approaches a failure state at which
the stress ratio reaches a constant
value, whilst unlimited distortion occurs
with no further change in effective
stress or volume. The conditions at the
critical state are given by:

q = Mp; dg = dp = dv = 0;

where: g 1s the principal effegtive'

stress difference, (o) - o3)

p 1is the mean pr%ncipa} effect-
ive stress, (o) + 203)/3

dv is the volumetric strain
increment, (de; + 2de3)

de is the distortion increment,
(dEl - dv/3)

M 1is the stress ratio, q/p, at
the critical state.

The present model differs from the pre-
vious critical state models for soil
behaviour, Cam-clay explained by
Schofield and Wroth (1968), and modified
Cam-clay Roscoe and Burland (1968).
Those models provide realistic predict-
ions of stress-strain behaviour only for
stress paths on the state boundary sur-
face (SBS). By contrast the present
model gives predictions for the whole
range of overconsolidated behaviour ben-
eath the SBS.

There is no recoverable shear strain.
The only recoverable strain increment is
volumetric and is given by:

r _ _xdp
dv™ = b (1Fe)  crrerreeees (2)

where: k is the slope of the line in the
e, 1n p plane for swelling
under spherical stress condit-
ions
e is the void ratio of the soil.

The distinctive feature of the model is
the recognition that overconsolidated
soil can experience plastic strains -
both shear and volumetric. A general
form of constitutive relation for incre-
mental plastic strain is given by Hill
(1950):

]
deBy = h st af  ........
j 01]

(3)

where: de? is the plastic strain incre-

J ment tensor
oij 1is the effective stress
tensor
h is the hardening function

(__\E_§
\AM - n,/ P

g is the plastic potential
and df is the differential of the
function f which defines
the yield locus.

Three hypotheses are introduced which
enable the functions f, g and h in
equation (3) to be determined. These
are:

(i) Overconsolidated soil experiences
plastic strain when, and only when,
there is a change in the stress
ratio q/p (denoted herein by n).
Furthermore beneath the state bound-
ary surface constant stress ratio
lines are yield loci. Thus the
function f specifying a particular
constant stress ratio yield locus
is given by:

f=qg=-mnp=0 ..oiiiii (W)

where: ni is the stress ratio defin-
ing a particular constant
stress ratio yield locus,
e.g. OA in Figure 1.

Fig, 1

Successive constant stress
ratio yield loci 0A, OB, OC
and OD for the stress path
abcd.

(ii) The undrained stress paths are
parabolic in the q, p plane. The
expression adopted is:

1 - po/P

I_:_E;7E;;a.'..... (5)

where: p, is the value of p at the

start of the undrained

path

ne 1s the stress ratio at
the start of the undrain-
ed path

Pcs is the value of p on the
critical state line cor-
responding to the cur-
rent void ratio

A is +1 for loading in
compression and -1 for
loading in extension.



As is evident in Figure 2 equation
(5) generates a family of undrain-
ed stress paths all of which are
directed towards the critical
state. It is assumed that the
location of the critical state
line in the stress space for ex-
tension is a mirror image of its
location for compression.

(d)

fes

g=-Mp

Fig. 2 Undrained stress paths for
n, = 0.0 and 0.5 calculat-
ed with equation (5).

(iii) An expression is adopted for the
ratio of the plastic shear strain
increment and plastic volumetric
strain increment, i.e., deP/dvP,
This is such that wet of critical
the volumetric plastic strain is
compressive and dry of critical it
is dilatant. This expression for
deP/dvP enables the partial deri-
vatives of the plastic potential
to be determined, i.e. 3g/3p and
3g/aq.

These three hypotheses provide all the
information needed for the calculation
of the plastic strain increments with
equation (3). The first and third en-
able df, 3g/3q and 23g/3p to be determin-
ed. The hardening function is arrived
at by considering two independent de-
finitions of an undrained stress path.
The first is that given by equation (5),
and the second is that obtained by
equating the recoverable volumetric
strain increment (equation 2) with the
plastic volumetric strain increment
(equation 3). This equivalence leads to
the hardening function, h. The details
are given by Pender (1977).

Substitution of the functions f, g and h
into equation (3) gives the following
equations for the plastic strain incre-
ments:
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2k (p/Pcg) (n-ngldn
M2(1+e)(2po/p—l){(AM—nO)—(n—no)p/pcs}
............ (6)

2k(pPo/Pes-1) (p/peg) (n-ngldn
(AM-ng)2(1+e)(2py/p-1)

In general these equations for the plas-
tic strain increments can be integrated
only by a numerical process. However,
there is one exception, a constant P path
Wwith p=py=pes; the integrated form of
equation (6) is then:

Z 2k { Ali=n
S — _ ool < 1) =
Des M2 (1+e) (AM no)ln( AM-n) (n “o)}
p
+ A R veo. (8)
where: cg is the cumlative shear strain

up to the start of the curr-
ent loading cycle from ng.

For such a path, equation (7} for the
plastic volumetric strain increment
reduces to zero and as p remains constant
there is no recoverable volumetric strain

The assumption that the current constant
stress ratio yield locus always remains
attached to the current stress point
makes it possible to use equations (86)
and (7) to calculate the response to re-
versed and cyclic loading in a simple
manner. When the direction of loading
changes from compression to extension, or
vice versa, the sign of A is changed and
n, and p, reset to new values. The kin-
ematic behaviour of the yield locus means
that there is no requirement to keep
track of the position of the current
yield locus.

The model described above enables the
stress-strain behaviour, both drained and
undrained, to be calculated for any state
of overconsolidation. Though the presen-
tation in this paper is for the stress
conditions in the conventional triaxial
apparatus extension to more general
stress systems is possible. Four para-
meters are needed to characterise a

given material: the stress ratio at the
critical state (M), the location of the
critical state line in the stress space
(Po/Pes for a soil normally consolidated
under spherical stress conditions), the
slope of the line in the e, 1n p plane
for swelling under spherical stress
conditions («x), and the slope of the
virgin compression line in the e, 1ln p
plane (A). The values of all four of
these parameters are easily determined
from routine laboratory tests. All cal-
culated results presented herein are
based on the following values: M= 0.90
(¢' = 239), po/pes = 1.90 for material
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normally consolidated under spherical
stress conditions, k = 0.04 (Cg = 0.09).
For the undrained situations considered
here the value of X is not required. The
void ratio must also be specified, in
this case a value of 1.38 is used which

is equivalent to a pgg value of 220 kN/m?

APPARENT SHEAR MODULUS AND EQUIVALENT
VISCOUS DAMPING RATIO FOR SMALL STRAIN
AMPLITUDE CYCLIC LOADING

Figure 3a is a plot of the undrained respon-
se, calculated with equations (5) and (8),
of an initially normally consolidated soil
to a gradually increasing cyclic shear-stre-
ss. The decrease in apparent shear modulus
and increase in plastic work for each cycle

as the strain amplitude increases is evident.

20019 khim

3b

~200 _

Fig. 3 Calculated response of normally
onsolidated clay to cyclic
undrained shear.
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Apparent shear modulus
G = slope of 0OA

Equivalent viscous 9
damping ratio:

D = 1 x area of loop
T area of AOAB

Fig. 4 Definition of apparent shear
modulus (G) and equivalent viscous
damping ratio (D).

A gradual increase in pore pressure is im-
plied by the approach of the undrained stress
path to the critical state value of p, Fig
3b. The apparent shear modulus (G) and
equivalent viscous damping ratio (D) are de-
fined in Fig. 4. Numerical evaluations of
these are possible for any stress path by
means of equation (6). However, equation (8)
provides a more convenient method for the
calculation of these parameters for lightly
overconsolidated material. It will be used
in majority of the calculations presented
below.

In a closed cycle of stress change, -n4* +nj
> -ny, the stress-strain loop calculatéd
with equation (8) is closed because there is
no change in void ratio or Pe Thus equat-
ion (8) can be used to express the apparent
shear modulus as a function of the cyclic
stress ratio, ny:

G = qcyc/5€yc

P
= 2n3DPcs/ecyc

On substitution for Egyc from equation (8),
and with n, = -nj and n = *ny:

M(1+elnipcs
i

< 1(1+13) 1n gy o 20y,
M M—nj M
At the critical state q_ g = Mp.g, thus:

T]j(l"'E)

G/Qeg =
M
ceecireenase (9

As n; tends to zero the right hand side of
equatlon (9) tends to infinity. The behav-
iour of the shear modulus with strain amp-
litude predicted with equation (8) is seen
in Fig. 5.

k {147 J)Jn(M+”J) LAk
J

Equation (8) can be used to evaluate the
apparent shear modulus for stress cycles in
which the mean stress ratio is not equal to
zero. The effect on the apparent shear
modulus of cyclic loading about a mean stress
ratio other than zero shown in Fig. 6.



Examination of equations (6) and (8) reveals
that when ng is greater than zero the appar-
ent shear modulus in compression is less
than that in extension and when n, is less
than zero the apparent shear modulus in com-
pression i1s greater than that in extension.
Thus in Fig. 6 the plot of apparent shear
modulus versus cyclic strain amplitude

104%

T lo’:E,% 1.0

Fig. 5 Apparent shear modulus/strain
amplitude relation for lightly
overconsolidated clay.

10~ »eq'n.9

10

10~ IO"‘EQ 10

Fig. 6 Effect of initial stress ratio
on apparent shear modulus.

calculated with equation (8) for loading in
extension from ngy = 0.5 lies above the re-
sults calculated with equation (9) when the
mean stress ratio for each cycle is zero.
Similarly the plot for loading in compress-
ion from ng, = 0.5 lies beneath that calcu-
lated with equation (9). In contrast if ng
was less than zero, rather than 0.5, the
relative position of the lines for compress-
ion and extension in Fig. 6 would be
reversed. The figure shows that the initial
value of n has little effect on the relation
between apparent shear modulus and cyclic
strain amplitude. However it does have a
considerable effect on the values of the
apparent shear modulus and shear strain for
equal and opposite stress changes. This is
shown by the two points marked '+' in Fig. 6
which are for equal and opposite changes in
q from n, = 0.5. Thus a closed cycle of
stress change when the mean value of n is
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not zero will lead to a net build-up in strain
The overconsolidation ratiowhen p = Peg for a
soil with the properties specified above is
2.14. For the many natural soil deposits
which exist in a lightly overconsolidated
state, equation (9) provides a convenient
means of predicting behaviour under cyclic
loading although this equation is strictly
valid only when the overconsolidation ratiois
equal to Ppax/Pcs- For the general case it
is possible to calculate the apparent shear
modulus and equivalent viscous damping ratio
for any overconsolidation ratio by means of
equation (6). Results of calculations for
the apparent shear modulus for overconsolid-
ation ratios 1, 5 and 20 are plotted against
strain amplitude in Fig. 7. The q versus eP
curve for each overconsolidation ratio was
generated numerically and the value of G
determined from this curve. The undrained
nature of the paths is ensured by determining
the incremental change in p, corresponding to
each increment in q, from equation (5). All
the stress cycles represented in the figure

10%

Fig. 7 Effect of overconsolidation ratio
on apparent shear modulus/strain
amplitude relation. (Mean stress
ratio = 0.0 for all cycles).

have a mean stress ratio of zero. It is
seen that increasing overconsolidation ratio
leads to a decrease in the apparent shear
modulus. A central concept of the model for
overconsolidated soil is that during loading,
the state of the soil is always moving to-
wards the critical state value of p. Thus
during a cyclic undrained test on normally
consolidated soil there is a gradual incre-
ase in pore water pressure as the stress
path moves towards pcg. This is illustrated
in Fig. 3. When the cyclic loading is appl-
ied to an overconsolidated material from an
initial state dry of critical, negative pore
water pressures are set up as the stress
path moves towards pcg. As the stress path
approaches p.g the apparent shear modulus/
strain amplitude relation approaches that
calculated with equation (9) and plotted in
Fig. 5. Thus the apparent shear modulus of
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a normally consolidated material decreases
slightly as the number of cycles increases.
On the other hand for materials with an
overconsolidation ratio substantially in
excess of 2 the apparent shear modulus incr-
eases as the number of cycles increases.
This phenomenon has been observed by Silver
and Seed (1971) for medium dense sand. Thus
equation (9) represents a limiting condition
which the model predicts for a large number
of loading cycles.

From the definition given in Fig. u:

{Bade® - 4 x Area s0BC

D= br x Area AOBC

Substituting in equation (9) ny=-nj and n =
+ny this becomes:

[ M+n e
(2/w)(l+Tf) {1n (M_“J) -2 (T%)}
D = " el n (10D
N3y { nj Mgy 2 (N4
(M) (1+M)X1n M-nj) 2(M)}

As n;i+o it can be shown that the right hand
side of equation (10) tends to a limiting
value of 0.21. The relationship between
damping ratio and strain amplitude is shown
in Fig. 9.

It is emphasised that both equations (9) and
(10) have been derived from the model for
large strain static behaviour outlined earl-
ier in the paper. No additional data or
assumptions have been introduced. It is
seen from Fig. 5 that the predictions of G
are reasonable for strain amplitudes great-
er than 0.01% but for strain amplitudes less
than this the predicted and observed behav-
iour diverge. This will now be remedied by

the introduction of an elastic shear modulus.

INCLUSION OF ELASTIC SHEAR MODULUS

The hypothesis that soil has no recoverable
shear strain may be realistic in many appli-
cations but at very small strains it is
probably an unacceptable simplification.

The predictions of equations (9) and (10)
are modified below by the inclusion of an
elastic shear modulus, the effect of which
is most evident at very small strains. With
the inclusion of this elastic shear modulus
the apparent shear modulus is given by:

G = QCyc/(Egyc i Egyc)

2njpcs/(e§yc + 2n4pcs/Ge)

Where: Gg is elastic shear modulus.
€cyc 1is the cyclic elastic distor-
tion = chc/Ge

On substitution for eg ¢ from equation (8)
and rearranging for ng=-n; and n = +nj,

the ratio of apparent shear modulus to qeg
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becomes:
. nj(lte)
Qecs {(1+n3)l (M+n3) 3_11 + Nj9cs(1lte)
M-n 5 M Ge

Cireeeaeeees (11)

As nj»o the right hand side of equation (11)
tends to Ge/qcg. The apparent shear modulus,
calculated with equation (11) using the same
values for M, «, e and p.g given above and

Ge = 51.0 Mpa, is plotted against strain
amplitude in Fig. 8. This compares well with
the pattern of experimental behaviour report-
ed by Seed and Idriss (1970) and Taylor and
Parton (1973).

10 -’\

10

10~ 1077 gY% 1-0

Fig. 8 Variation of apparent shear mod-
ulus with strain amplitude in-
cluding the effect of a small
strain elastic shear modulus.

With the inclusion of elastic shear strain

the expression for the equivalent viscous
damping ratio becomes:

(2/n)(1+22) {1n(ﬂiﬂj)-z(ﬂi)}
n3

) i) {(l+—l)1n(___l) 2“3} + iliilgsiillf
—n. Ko,

ceeneaeee.. (12)

It can be shown that the right hand side of
equation (12) tends to zero as n4 tends to
zero. The behaviour predicted with equation
(12) is presented in Fig. 9. As with Fig.

8 the predictions in Fig. 9. compare well
with the experimental behaviour reported by
Seed and Idriss (1970) and Taylor and Parton
(1973). Equation (12) is derived for stress
cycles in which the mean stress ratio is
zero. TFor cycles in which the mean stress
ratio is not zero but py is still equal to
Pes equation (8) can be used to evaluate the
equivalent viscous damping ratio. For the
general case the equivalent viscous damping
ratio may be evaluated using equation (6) for
the plastic shear strain increment and dq/G,
for the elastic shear strain increment. In this way
the shape of the stress-strain loop is generated,
evaluation of the area of the loop then leads
to the equivalent viscous damping ratio.
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eqtn,10 _ =

D% I
T e
O ] [ ! ' |
10~ * 10°* £% 1-0
Fig. S Equivalent viscous damping ratio
predicted with the inclusion
of elastic shear behaviour.
CONCLUSIONS

This paper has shown how a stress-strain
model for overconsolidated soil originally
developed for large strain static behaviour,
can be extended to give realistic predict-
ions for small strain cyclic loading. One
additional soil property, the elastic shear
modulus, was introduced to make predictions
at very small strain amplitudes realistic.
Thus the number of properties required by
the model to describe a given soil rises
from four to five.

The model has the advantage of providing a
highly unified treatment of stress-strain
behaviour of soil. Thus one model is cap-
able of treating a wide range of soil
behaviour. Both the apparent shear modulus
and the equivalent viscous damping ratio are
predicted in a realistic manner. Four of
the five parameters needed to characterise a
given soil are determined from routine lab-
oratory tests. The fifth parameter, the
elastic shear modulus, is most conveniently
determined from measurements of the in situ
shear wave velocity. Thus assessment of the
behaviour of a soil deposit under cyclic
loading will be possible without any special
laboratory testing to determine soil para-
meters.

At first sight equations (9) and (11) for
the apparent shear modulus (G) and equations
(10) and (12) for the apparent viscous damp-
ing ratio (D) might seem rather complex.
However, the facilities available to the
engineering profession today make computat-
ion straight forward and relatively inexpen-
sive. 1In contrast the determination of
values for properties to characterise a
given soil by laboratory and/or field test-
ing is often difficult, time consuming and
costly. Two most important features of the
present model are (i) the small number of
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parameters needed to characterise a given
soil, and (ii) that values for these can be
determined from routine tests.

Although the treatment in this paper is for
the stress conditions in the conventional
triaxial apparatus extension to more general
stress system is possible.
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