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BEARING CAPACITY OF DEEP FOOTINGS IN SENSITIVE CLAYS

CAPACITE PORTANTE DES FONDATIONS PROFONDES DANS LES ARGILES SENSIBLES
HECYWlAl CNIOCOBHOCTD '1IYBOKNX ONOP B YYBCTBUTEJLHWX TJIHHAX

B. LADANYI , Professor, Ecole Polytechnique, Montreal (Canada)

SYNOPSIS. It has been known for some time that the value of the bearing capacity factor Ne¢ in the Terzazhi's
formula for the evaluation of undrained bearing capacity of clays may be smaller than its original Prandtl's
value if the clay is either very deformable or very sensitive. In the former case, a reduction by one third of
the Ne factor, proposed by Terzaghi, is commonly used. For sensitive clays, in turn, a formula for calcula-
ting the reduced N¢ factor for deep circular footings was proposed by the author in an earlier paper. A
similar type of solution has been used in this paper for finding the corresponding expressions for the N¢
factor, valid for rectangulax footings of any aspect ratio and at any depth. The reduced values of N¢ Ffactor
are intended to be used in connection with reasonably undisturbed values of the peak undrained strength of sensi-
tive clays, obtained by modern sampling and testing methods.

INTRODUCTION
The short-term ultimate bearing capacity of saturated for either weak clays, which fail at large strains,
clays beneath shallow footings is commonly estimated or sensitive clays, which show a strain-softening
by using the total stress concept and @, = O analysis, post—-peax behavior, it is considered that the value of
for which the original Terzaghi's (1943) bearing ca- the N¢ factor should be generally smaller than 5.14
pacity formula reduces to given by Prandtl.

qult = YD+ cu Ne (L

For weak clays, Terzaghi (1943) has proposed to re-

where is the ultimate bearing pressure, y is duce by one-third the value of ¢y 1in Eq.(1). This
dult im g P 2 is, obviously, the same as reducing the N factor

the average total unit weight of overlying soil, D X X

i5"che depth o fooring, Gy and G are undrsined 5y, sume st and wsing pesk oy velue in B

shear strength parameters of the clay within the . d C e & <

failure zone, and N is the bearing capacity factor. same order was anticipated by Osler and Peck (1963)

For the latt, th g del! 1u Ne = m +2 o and Brown and Paterson (1964). A theoretical value
er, e fran s value c = - of the reduced N, factor for such clays was obtained

. 5.14 (Terzaghi, l?43),lva1id for a v?rtically.and by the author (Ladanyi, 1967a) for the case of a deep
centrally loaded infinite strip footing, resting on . . ) .
circular footing, by using an approximate analysis

the sgrfac? of a rigid - ideally plastic.frictionless based on the mathematical model of an expanding
material, is commonly used. For estimating the . .

3 . . . spherical cavity.
bearing capacity of rectangular and circular footings
located below the surface of the bearing layer, an
approximate method, proposed by Skempton (1951),
Brinch Hansen (1961) and Meyerhof (1963), consists
in multiplying the basic value of the N¢ factor by
convenient shape and depth factors. In Brinch Hanen's
notation, Eq.(l) becomes then

The purpose of this paper is to extend the same type
of analysis to cover also rectangular footings of any
aspect ratio and at any depth. It is obvious that,
for any particular case and type of clay, a complete
numerical solution of such a problem can be obtained
by a convenient numerical method. Recently, the

Qult = YD * ¢y Ne sc de 2) finite element analysis was used by HBeg (1972) to

obtain complete solutions for two cases of circular

where Ne is defined as before, while s, and d. foundations located at and below the free surface of

are the shape and the depth factor, respectively, a saturated clay-with strain-softening chargcteristics,

the values of which will be discussed later. In the two cases a reduction in bearing capacity of
approximately 407, with respect to the perfectly

It is commonly considered (Terzaghi, 1943) that the plastic soil, was found. The reduction is of the same

Prandtl's value of N, factor, which is based on a order as that calculated by the author for a sensitive

rigid - plastic assumption of material behavior, is clay (Ladanyi, 1967a).

well suited for estimating the bearing capacity of
stiff clays of low sensitivity. On the other hand,
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It is interesting to note that, in spite of theore-
tical predictions of that kind, until very recently,
most studies presented in the literature in which
predicted and measured undrained bearing capacities
of sensitive clays have been compared, have found a
satisfactory agreement without having to reduce the
N factor. HYeg (1972) gives a number of reasons
for this apparent inconsistency, the most important
of which may be the fact that, in most of the older
studies, the reference shear strength of clay was de-
termined either by field vane tests or by conventional
unconfined or unconsolidated-undrained triaxial tests
performed on samples taken from boreholes by means of
various types of thin-walled tube samplers. It is,
however, known at present (Eden, 1966, 1970; Conlon
and Isaacs, 1970) that such a sampling and testing
procedure tends to underestimate the true in-situ un-
drained strength of sensitive clays sometimes as much
as 507. The apparent agreement between the observed
and. calculated bearing capacities obtained by using
non-reduced N values, quoted in some earlier studies
(E.g., Bjerrum, 1955; Legget et al, 1961) may, there-
fore, be due to a compensation of two errors of si-
milar magnitude.

Increased use of more advanced sampling and testing
methods in recent years (Raymond et al, 1971) has had
as a result that undrained strengths of sensitive clays
measured more recently tend to be higher and closer to
their true in-situ value than before. It would there-
fore be unsafe to continue using non-reduced N¢
values with these higher strengths when estimating

the bearing capacity of sensitive clays. The reduced
Ne values calculated in the follawimg are intended

to be used with such higher shear strengths obtained
by modern sampling and testing methods.

THEORETICAL PREDICTION OF N. VALUE

To date it has not been possible, by using the prin-
ciples of the theory of plasticity, to find a rigorous
closed-form, solution of the problem of deep punching
of saturated clays. Two approximate solutions have,
however, been proposed. The first one was obtained by
extending to the deep punching problem the original
Prandtl's theory valid for punching at the surface
(Meyerhof, 1951). Since the problem is based on a
rigid-plastic assumption of material behavior, the
calculated N. values are relatively high and cor-
respond well to those associated with the bearing ca-
pacity of deep footings in stiff clays of low sensiti-
vity. )

The second approach, based on the work by Bishop et al
(1945) on the indentation of ductile metals, assumes
that the resistance to deep penetration is of the same
or@gr of magnitude as that necessary for expanding a
small cavity in the medium under the same conditions.
In soil mechanics, the approach was first used by
Gibson (1950) for estimating the end-bearing capacity
of deep foundations in clay, and was further discussed
by Skempton (1951) and Meyerhof (1951).

With respect to the first one, the second approach has
the advantage of being able to take into account not
only the ultimate strength but also the whole stress-
strain behavior of the indented material, which makes
it suitable for studying the bearing capacity of weak
and sensitive clays. The theory of cavity expansion
owes its great versatility to the fact that it
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considers a highly symmetric problem, enabling rela-
tively simple analytical solutions to be obtained
even for a rather complex material behavior.

When used in connection with a less symmetric problem,
such as the bearing capacity of a deep footing, it
necessitates some additional assumptions. In soil
mechanics, the transformation from a cavity expansion
solution to a deep punching problem has usually been
made by assuming, as proposed by Gibson (1950), that
during the penetration of the punch a rigid soil cone
(for a circular punch) or wedge (for a rectangular
punch) is formed at the base of the punch, the lateral
surface of which is acted upon by a uniformly distri-
buted soil pressure whose normal component is equal

to the ultimate cavity expansion pressure, pylt -
Assuming that the semi-angle at the tip of the cone
(wedge) is 45° and that, at failure, the shear strength
of clay over the whole area of the cone (wedge) has al-
ready dropped to its residual value, cyp, One gets
from static equilibrium

Quit pult t cur 3)

In order to get the conventional bearing capacity
factor, quit can be expressed by Eq. (2) in which
the term vD is replaced by the average total normal
pressure po at the footing level. From Eqs (2) and
(3) ane gets

Ne 8¢ de = ¢yr/eq + (pult - Pod/ey (&)

In all cases in which clay failure under the footing
is of a punching type, i.e. without formation of
distinct failure surfaces, the value of pyl¢ in

Eq. (4) can be determined from the cavity expansion
theory. In reality, in weak clays tha punching fail-
ure is commenly either the only one observed ar it
precedas a general shear failure which occurs only
aftar very large displacementa. In relatively stiff
clays, the punching failure is observed only when the
footing depth is greater than about four times its
width, i.e. when the effect of the free surface be-
comes relatively small (Meyerhof, 1963). 1In all such
cases, the value of the bearing capacity factor cor-
responding to 4 punching failure can be deduced from
Eq. (4) if the ultimate cavity expansion pressure
Pult 1s known.

It has been known for quite a long time in metal
plasticity (Nidai, 1931) that the problem of expansion
of thick-walled cylinders and spheres could be solved
approximately for any given stress-strain law of the
material if the cylinder or sphere is considered as an
assemblage of a great number of thin concentric layers,
all of them responding to that common stress-strain
law. At a given expansion of the bore, the behavior
of any particular layer will be governed by the por-
tion of the common stress-strain curve corresponding

to the interval of shear strains to which the layer is
submitted. In this type of solution, the differential
equation of equilibrium has to be integrated only for
one single layer, governed by a simple stress-strain
law. The complete solution of the problem is then
obtained by numerical integration. It is essentially
this method that has been used by the author for a
number of years for solving several cavity expansion
problems both in clays and in sands (Ladanyi, 1963a,b).

It was shown in an earlier paper *(Ladanyi, 1967a) that
such a numerical solution for the ultimate spherical
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cavity axpansion pressure, pyj¢,sph based on an un-
draimed stress-atrain curve of any shape (Pig.l),
could be written in the form

2 2
Pylt,sph = Po + 311 3

Sl
q.
f:b i+1

- di,ih Yi+1] InCvy/vg+1) (%)

where, as shown in Fig.l, q and Yy denote the
principal normal stress difference and the principal
normal strain difference at the point i of the curve,
while di,i*i is the slope of the straight-line seg-
ment replacing the curve within the interval i, i+,

di,ah = (@1 = 9340/ Gyy - Yig) ®)
|
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FIG. 1. LINEARIZATION BY SEGMENTS QF UNDRAINED
STRESS-STRAIN CURVE OF CLAY.

It can be shown that, when applied to a simplified

strain softening stress-strain curve, such as that in
Fig. 2, OABC, Eq. (5) can be written as

2 qr[l - (1 -A)ln v, -Aln Yp]

Pult,sph = Po + 3
(7
where A denotes
A (ap/ar) (¥e/Yp) - 1 (3)

(lvp) -1

in which subscripts p and r denote peak and

residual, respectively.
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FIG. 2. VARIOUS CONSIDERED ASSUMPTIONS ON THE SHAPE
OF THE UNDRAINED STRESS-STRAIN CURVE

Substituting Eq. (7) into Eq. (4) and taking into ac-
count that ¢ 2 ¢y , one gets the expression for the
bearing capacity factor ef a deep circular footing

Ne,circle = Ne sg de & {eyp/cup) + (4eyp/degp)x
{1 - (1-A)1nyp - Alnyp:l ©))

Equations (7) and (9) can also be written in terms of
deformation moduli if Yp and Y, are replaced by
3qp/2E and 3q;/2E,, where and E; denote the
slopes of the lines OA and OB in Fig. 2. For example,
when applied to a linear-elastic perfectly plastic type
of stress-strain law, OAC' in Fig. 2, Eq. (9) reduces
to the well known formula (Gibson, 1950),
Ne,circle = 1 + o[1 + 1nE/3ey)] (10)
c,circle 3 u

Another simple formula for N is obtained from Eq. (9)
if the assumed stress-strain relation is given by the
line OAC in Pig. 2, whlch ia a typical strain softening
behavior. Them, as Y; = 1 and A Qtur/cup , ona gets

4
Ne,circle = (Cur/cup) + 3 [(Curlcup) + lﬂ(Ep/3Cup):|

(10a)

In order to get a corresponding solution for the deep
strip footing, the same analysis should be repeated for
the model of an expanding cylindrical cavity, whose
longitudinal axis coincides with the centerline of the
strip. Assuming temporarily that plain strain inform-
ation on the undrained stress-strain behavior of the
clay is available, (such information can, e.g., be ob-
tained from a pressuremeter test as shown in Ladanyi,
1972), and that it is represented as in Figs. 1 and 2,
similar general expressions as in the spherical case
can be obtained. For the cylindrical cavity expansion
case, one obtains for the curve in Fig. 1,

n-2
1 1
Pult,eyl = Po + 79+ 3 iZ_L [qi+1 - dy ih Yi+1]“

*1n (vi/ ¥i+1) 1y
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Equation (6) and (8) remain unchanged, while Eq. (7)
becomes

1
Pult,cyl = Po +75 ar [1-(-a) Iny, ~ Aln Yp ]
(12)

In the same manner, the bearing capacity factor for a
deep strip footing is given by

Ne,strip = NeSede = (eyp/eyp) + (curlcup)‘

x[1 - (1-4) 1y, - A 1nyp] 13)

Equations (11) to (13) can also be written in terms of
stress-strain information obtained in an ordimary un-
drained triaxial test, i.e., under axial symmetry con-
ditions, if the validity of a common octahedral stress-
strain relationship is assumed. In undrained case,

the following relationships between the plain strain
(subscript ps) and axial symmetry (subscript a) in-
formation are obtained (Ladanyi, 1967b),

Qps = 2qa//3 (14)
Yps = 273 (15)
Eps = 4Eg/3 (16)

The plane strain y values in Eqs (11) and (13) may
then be replaced by

Ypo 3 24pg/Epg = V3 4y/By Qa7n

In termg of axial symmetry infarmatjon, Eq. (12) be-
came s

Pult,eyl = Po * (arV/3)[1 + (1-A)In(€ar /3 qap) +
+ A 1n(Eyp M3 qap)] (18)

from which for a deep strip footing, and after drop-
ping the subscript a ,

[ E
ur 2
Ne strip = Cup {1 +/3 1+ (l-A)ln<mr-C;) +

s EJ )
+ A h'\2/3_c a9)

As before, if Eq. (19) is applied to the linear-elastic
perfectly plastic law OAC' in Fig. 2, one gets the
known formula (Bishop et al, 1945),

2 E
Ne,strip = 1 "7’5(1 +1n m) (20)

Again, for a strain softening behavior such as OAC in
Fig. 2, one gets a simple expression
[

ur z(cur B )
N = gt = + 1n (203)
c,stri :%
P Cup ‘75 \ c'up 2 cup

In a previous paper (Ladanyi, 1967a) it was found from
undrained triaxial tests carried out with Leda clay
from Ottawa area with a sensitivity of about 16, that
its stress-strain curve could be reduced to the shape
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shown in Fig. 2, OABC, with the following values of
relevant parameters: ¢,./cyp = 0.45; /eyp = 500;
Ex/eyr = 16 and  yp/yp = 31.25 . Subsgituting these
parameters into Eqs (9) and (13) respectively, one
gets the values of generalized bearing capacity
factors Nc circle = 6.72 for a deep circular footing,
and Ng strip = 5.80 for a deep strip footing. For
comparison, a non-sensitive clay (cur/Cup = 1) of the
same rigidity (E /cu = 500) would have according to
Eqs (10) and (205, respectively Ne,circle = 9.15 and
Ne strip = 7.90 . The reduction in Nc factors due
to stragn softening character of the clay is seen to
be 26.5 per cent, which is close to one-third assumed
by Terzaghi for weak clays.

For a linear decrease of strength after the peak,
such as shown by the line AC in Fig. 2, the varia-
tion of N factors with cur/Cup according to Eqs
(10a) and (20a) for deep circular and strip footings,
is shown in Fig. 3 .

12 i i ; 7
—— deep circle

——— deep strip

1 08 06 04 0.2 0
Cur/Cup

FIG. 3 . VARIATION OF N, FACTORS FOR DEEP FOOTINGS
FOR A LINEAR DECREASE OF UNDRAINED STRENGTH
OF CLAY AFTER THE PEAK (AC in FIG. 2).

EFFECT OF FOOTING SHAPE

Once the values of generalized bearing capacity
factors for deep strip and circular footings have been
determined, the corresponding factors for any rectan-
gular footing with a given aspect ratio, B/L, can be
obtained by linear interpolation, as proposed by
Skempton (1951). Defining a general shape factor,

S. , by the formula
/Ne,circle 3 B
S¢c = & e B '1)_
\N¢,strip J L (21)



the value of beartsg capaclity faptor for a given
value of B/L 1is

Bo(B/L) = Mo, gerip 8¢ (22)

It is interesting to note that from the above calcu-
lated numerical values of N, factors for the Leda
clay, the value of s, woul§ be

s. = 1 +0.16 % (23)

which 1s close to the formula proposed by Skempton
(1951) .

EFFET OF FOOTING DEPTH

On the basis of observations and theoretical pre-
dictions, Brinch Hansen (1961) has proposed the fol-
lowing empirical formula for the depth factor, d. ,
to be used in the bearing capacity formula, Eq. (2),
which is valid for undrained (¢, = 0) failure of a
footing in clay:
0.35
de(p/p) = 1 + ——— (24)
B/D + 0.60

where B and D are the footing width and depth,
respectively. Denoting by N,  the bearing capacity
factor for a footing resting on the surface, the va-
lue of Nco(p/B) for a footing at any relative depth
D/B is given by

Be(n/B) = Neo de(n/B) (25)
For infinite depth Eq. (25) becomes

Non = Neg dem (26)
Dividing Eq. (25) by Eq. (26) yields

Ne(D/B) = Ne=de(p/B)/de (27

Since from Eq. (24), d., = 1.584, one gets finally
Ne(p/B) = Neadg (28)

where

. 0.631 + 0.6 D/E
de = deosBy /de= =TT T o0.6D/B (29)

is a modified depth factor, enabling to estimate the
values of N, factor for a finite depth from the cor-
responding values of the factor, valid for infinite
depth.

Taking into account simultaneously the shape and the
depth of footing, the formula for the bearing capa-
city factor is

Ne¢/Ly(0/B) = Ne,strip,= S d} (30)

vhere N¢ gtrip.o 1S glven by Eq. (19), s. by

Eq. (21), and a’ by Eq. (29) .

Taking again the foregoing N. values for the Leda
clay a& example, one would get by this method, for a
footing on the surface, the following N, values:
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Ne stri = 5.80x0.631 = 3.66, and Nc,circle,o =
6.72x0. 831 = 4.25 . For a non-sensitive clay of the
same rigidity, one gets Nc,strip,o = 4,99 and
Nec,circle,o = 3.78, which are close to the valuea
expected for a general shear failure.

SENSITIVITY AND DEGREE OF DISTURBANCE

The foregoing analysis shows that, in order to be able
to evaluate the N, factor for a footing in a amen-
sitive clay, it is necessary to have a knowledge on
the complete undrained stress—strain curve of the clay,
covering the region of strains fromy =0 toya=1l.
If the curve is mubsequently reduced to the shape
shown in Fig. 2, the computation of N, factors can be
made by using only four relevant parameters, i.e., the
shear strains Yp and vy, , and the shear strengths

typ and cyr -

It has been shown in an earlier paper (Ladanyi, 1967s)
that, 1f the neual secant modutus method 1s used for
linearizing the aascending part of the curve (Fig. 2),
one gets for typical sensitive clays the values of the
Ep/cup racrio between the limite of about 250 and 500.
As, for an undrained test, = 3cy /Ep these 11i-
miting ratios correspond to G 012 3=y > 0.006 .

Some more recent field atudies, reviewed by D'Appolonia
et al (1971), show that Ep/c may even he as high as
1200 (er vy, = 0.0025) in certain clays.

1.0;

N Y
-Scott clay, S;=2
\ \(\

N\

08 \\\
_—Boston blue clay, S;=5.9 (Goodman, 1968)
g \
3 &
5na .
& 06 ~ -
~Ottawa clay s.:xa\\\\z,
1 N Scott
04 S =
N e
. \Qi Outardes clay, Sy=11
& ~5=zip Eai33)
“ 02(- e ~£L_ Boston -
S = ! Rewil
AT
“Thuribe clay, S¢= 200 —— 1 r
5, iaws
0 : ¢ Ty
0 100 200 300 400 500 600

Accumulated angular distortion )' degrees

FIG. 4. POST-PEAK LOSS OF UNDRAINED STRENGTH IN CLAYS
OF DIFFERENT SENSITIVITIES

The shape of the post-peak descending portion of the
stress-strain curve, necessary for determining the
parameters Yy and c,,, has been discussed in two
earlier papers (Ladanyi, 1967a; Ladanyi et al, 1968).
Experimental evidence on the past-peak behavior of
five clays of different sensitivities has been repro-
duced in Fig. 4. Of the five curves shown in the
figure, four (Scott, Ottawa, Qutardes and St-Thuribe)
have been taken from the above two papers, while the
fifth (Boston blue clay) originates from a paper by
Goodman (1966). For obtaining the first four curves,
the method used was a repeated large strain compres-—
sion with separate measurement of the disturbed shear
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strength of clay, The CGoodman's curve, in turn, was
obtained by measuring the work of distortion in a
cyclic, constant volume, shear box test, enabling to
deform the clay uniformly up to 409 angular distortion
per cycle. The Boston blue clay curve shown in Fig.4
was recalculated from Goodman's Fig.2l by using the
following relationship, expressing the degree of dis-
turbance, dy , in terms of the c ratio and the
sensitivity, S; :

1l -

up/cur

Cur/Cy
4y = P (1)

1-1/5s,

vhich gives 0 <dy < 1 when 1 2> cyr/cyp > 1/Sp.

The sensitivity of clay is commonly defined as the
ratio- between undisturbed and completely remolded
gshear strength of clay. As the testing procedure for
sensitivity determination has not yet been standard-
ized, the sensitivities quoted in the literature cor-
respond to various testing methods. At present, most
frequently stated are the values of sensitivity ob-
tained from field and laboratory vane tests.

The values of sensitivity according to this defini-
tion, while being useful as an index property of clays,
have nevertheléss very little use in practical founda-
tion design. In fact, the completely remolded strength
of clay as a factor in foundation design in natural
clay deposits appears only exceptionally and mainly
not as a cause but as a result of large localized

shear displacements.

If, as considered in this paper, the fallure is of a
contained plastic flow type, it can be shown that an-
gular distortton under the ¥ootihg ¥ill mowhere exceed
the value 6f 90® . In other words, punching failure
of a feoting 1in sensitive ¢lays 1s governed only by
the portion of the stress-stralm curve up to 90¢ of
angular distottion, which is still very far from a
complete remolding, requiring usually distortions of
at least 10 times that value.

The obtaining of the immediate post-peak portion of
the stress-strain curve requires, unfortunately, ra-
ther time-consuming and unconventional testing methoda
An attempt will, therefore, be made here to predict
the behavior from the available experimental data.

The curves in Fig. 4 show, in a general manner, that
the rate of loss of strength after the peak is pro-
portional to the clay sensitivity. On the other hand,
it can be shown that the degree of disturbance, de-
fined as in Eq. (31), follows approximately a hyper-
bolic law of the form

dg = v° /63 +Y9) (32)
where Y° 1s the angular distortion in degrees and
'g is a constant. Substituting Eq. (32) into
Eq. (31) yields
Cur _ Yg + YO/St
- T o L (33)
Cup Yg + Y
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It will be seen that, according to Eq. (33), 1 2> c,./
Sup 2 1/Sy when 0 < y? < =, Equation (33) can be
used for approximating the curves shown in Fig. 4.

For example, it can be shown that a good approximation
for the Scott clay curve is obtained with yg = 720°,
while for the Boston blue clay one should takeyg ="
210° . For the remaining three very sensitive marine
clays, the best approximation is obtained with vy, =
38.6° . Two calculated curves for sensitivities of

10 and 100 are shown for comparison in Fig. 4 and are
seen to agree well with the observed behavior. 1In
other words, it appears that for 10 < Sy < 100, the
post-peak behavior of marine clays can be predicted by
Eq. (33) with v3 = 38.6° . When calculating the N
factors according to the described method, the hyper-
bolic curve can then be used directly, or replaced by
one or two straight lines. It should be noted that y
values in radians should be used in the foregoing
formulae for N, factors.

COMPARISON OF PREDICTED AND OBSERVED BEHAVIOR

As mentioned in the introduction, although a number of
foundation failure studies, as well as some reports on
plate loading ctestss in sensitive clays can be found in
the literature (E.g., Bjerrum, 1955; Legget et al,1961;
Brown and Paterson, 1964), the results of these studies
are difficult to use as a basis for comparison with the
theory, sInce, due to sampling and testing methods em-
ployed, the reported shear strengths were probably
closer to an average than to a true peak strength of
clay. Tt other words, if the reported bearing capaci-
ties were reanalyzed in terms of undrained shear
strengths obtained on block samples, which seem to be
the Hleosest bte reality, one would obtain for the mea-
sured ¥, factors valués tbhat era lower than those de-
rived from the Prandtl's theory.

That this may, in fact, be the case, has been shown by
the results of laboratory and in-situ deep penetration
tests in sensitive clays carried out by Ladanyi and
Eden, (1969), in which a reduction of close to 40 per
cent in tha value of baaring capacity factors was
found.

On the other hand, the degree of approximation obtaindl
by the proposed method can be estimated by comparing
its predictions with the results of computer simula-
tion of bearing capacity problems by modern numerical
methods. The reason that they may be expected to be
comparable is because both types of solutions consider
only a contained plastic flow without general shear
failure. From a number of such analyses,that have been
published in recent time, only two will be used here
for comparison.

Radhakrishnan and Reese (1969) have used the finite
element method for analyzing the behavior of a strip
footing resting on saturated Wilcox clay and have com-
pared the results with actual model tests. The clay,
remolded and recompacted, showed the values of E =
19 kg/cm2 and ¢, = 0.123 kg/cm2 in unconsolidated un-
drained triaxial tests. Taking into account that, in
the model tests, failure was preceded by a settlement
of about 10 per cent, Eqs (20) and (29) give N¢ =
4.47 and qu1¢ = 0.55 kg/cm? . The bearing capacity
measured in the tests at that_settlement was about
0.60 kg/cmz, while 0.65 kg/cm2 was predicted by the
finite element method. The slightly higher values in



the tests and the calculation are thought to be due
to the effect of rigid bottom and walls present in the
test and assumed in the calculation.

H8eg (1972) presented a finite element solution for a
circular footing resting on and below the free surface
of a saturated clay with strain softening character-
istics. While insufficient dat do not permit a de-
tailed comparison with his results, it is interesting
to note that his calculations show that a circular
footing in sensitive clay may not only have 1its bearing
capacity reduced by about 40 per cent, but also that
it would fail at much smaller settlements than the
same footing in a non-sensitive clay of the same ri-
gidity. He was able to demonstrate the last point by
comparing his results with the behavior of a quick
clay under a test f1ll (H8eg and al, 1969).

The available evidence presented shows that the pro-
posed theory leads to a reasonable estimate of the
reduced bearing capacity factors for sensitive clays.
Additional evidence can only be obtained if future
foundation failure studies will be analyzed in terms
of the true in-situ peak strength of clay.

CONCLUSIONS

In the past, the bearing capacity failures have most
frequently been analyzed by using a general shear fail-
ure concept. The concept was usually found satisfact-
ory if used in connection with undrained shear
strengths of clays obtained by ordinary sampling and
testing methods which, by present standards, are known
to furnish shear strengths closer to an average value
than to a true peak strength. In recent time, &he use
of more advanced sampling and testing methods and, in
particular, those involving large diameter and block
samples, tends to furnish much higher shear strengths
of sensitive clays, which, 1f used with a general
shear failure concept, would lead to an overestimate
of the bearing capacity of footings. In order to get
reasonable bearing capacity predictions with these
higher strengths, a use of reduced bearing capacity
factors, to compensate for the clay sensitivity, is
recommended. A theory enabling to determine the re-
duced values of the bearing capacity factor Ng for
clays of strain softening type and valid for rectan-
gular and circular footings at any depth, is described
in this paper. The value of the N¢ factor is found
to depend considerably on the rate of strength de-
crease of clay in the post-peak region, which appears
to be proportional to the clay sensitivity.
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