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ONE-DIMENSIONAL CONSOLIDATION OF LAYERED SOILS
CONSOLIDATION UNIDIMENSIONNELLE DES SOLS STRATIFIES

SYNOPSIS

An analysis of the rate of settlement of layered soil depositsg

E.H. DAVIS, Professor
1 K. LEE, Senior Lecturer

University of Sydney, Australia

consisting of two

layers, repeated layer pairs, and a general heterogeneous system of layers is discussed.
To establish the degree of settlement-time€ factor relationship it is only necessary to

specify two dimensionless parameters for each interface.
two layer soil deposit and the repeated layer pair type of deposit, are presented.

Detailed numerical results for a
Two

approximate methods are discussed and their accuracy examined in relation to the numerical
and analytical results, and also in relation to two specific examples of four layer deposits.

INTRODUCTION

The mathematical treatment of the rate of
consolidation of two contiguous soil layers
under a one-dimensional strain state was
first considered by Gray (1945) although he
gave only a few numerical solutions. Subs-
equently, approximate methods for solving
this problem have been suggested by several
investigators, notably, Barber (1945),
Richart (1957), Palmer and Brown (1957),
Davis (1961), and Sridharan and Nagaraj
(1962). These methods involve either a
transformation in thickness of the layers in
order to make use of the Terzaghi solution
for a homogeneous layer, or the use in the
Terzaghi equation of an equivalent coeff-
icient of ccnsolidation. Up to the present
time there appears to have been no published
detailed evaluation of the formal solutions
for a soil deposit consisting of two layers,
and the validity of the approximate methods
for a two layer or any multi-layered soil
has not been established.

It is shown in the present paper that the
formal solutions for a two layer soil can be
expressed in terms of two dimensionless
parameters. For each extra layer there
are two extra dimensionless parameters
required to completely specify the relevant
soil properties. Thus it has been found
possible to give a full coverage of
solutions for a two layer system but the
presentation of settlement-time relation-
ships for a deposit composed of a heterogene-
ous system of more than two layers is not
practicable, and the latter require pro-
gramming of the basic equations if a precise
answer is required. However in many prac-
tical situations it is desirable to have
available a method which allows rapid, but
necessarily, approximate calculations for
the settlement-time relationship.
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BASIC PARAMETERS

From Gray's analysis, and the numerical
method discussed below, it is evident that
only two dimensionless parameters are re-
quired to define the interrelationship
between the consolidation behaviour of two
adjacent layers. The two parameters sel-
ected here are the ratio of the total final
settlements of the layers, that is,

m, h.

a. .. = 1 1
LA+ myyy by
and a parameter defined as
b _ ki+1 hi
i, (i+l1) ki hj4

where mj, mj4) are the coefficients of vol-
ume decrease of the ith and (i+1)th layer,
respeetively, hj, hj,) are the corresponding
thicknesses, and ki, kj41 are the corres-
ponding coefficients o% permeability. A
further parameter useful in the presentation
of results is the ratio "a" to "b" which is
designated as «a.

For the two layer deposit and the Rowe

model of a layered deposit consisting of
identical layer pairs, the parameters "a"
and "b" have only one value each. For the
general case of a soil deposit composed of

n different layers (n-1) "a" parameters,
and (n-1) "b" parameters will define the
rate of settlement.

When selecting the definition of the time
factor for such a deposit it is logical to
choose the total thickness of the deposit,
H, and the equivalent coefficient of_
consolidation of the whole deposit, c, in
preference to the values of any particular
layer. Thus, the time factor, T, is
defined as
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=_¢ = H
T = E—% where ¢ = ————— g —
. Bming) (g

For a two-layer deposit consisting only of
layer 1 overlying layer 2, or a deposit
having these layers alternating, as consid-
ered by Rowe (1964),

= _ ab
T =T 1353y (1+D)
where T, = pfﬁf and p = number of pairs.,
1

Although for most purposes T is the most
suitable definition of a time factor, T, is
useful in bringing out some aspects of the
theoretical results.

In general only three sets of drainage con-
ditions at the upper and lower boundaries
of the deposit need be considered. These
are PTPB, PTIB and ITPB where P denotes
permeable, I impermeable, T top, and B
bottom.

Only vertical consolidation due to a vertical
stress uniform with depth is dealt with in
this paper.

NUMERICAL ANALYSIS

In the following analysis the usual assump-
tions of one dimensional linear consolida-
tion theory are made so that the Terzaghi
equation is applicable within each layer.

A complete solution is obtained by satisfy-
ing this equation and the appropriate pore
pressure and continuity conditions of the
external boundaries and the inter layer
boundaries.

A numerical technique was used as it could
be readily adapted to the general case of a
large number of layers. The relevant
finite difference approximation of the
Terzaghi equation was the explicit form,

2u )

+ B. -
u Bl(ur,s+1 r,s

u =
r+l,s r,s

where r is an integer defining time, and s
is an integer defining position within a layer.

If the above equation is applied to the ith
layer, then the expression for the (i+1)th
layer is identical provided B; is replaced by
Bi+1’ where

8 b

i+l = B35 54-
The latter expression involves the logical
assumption that there are an equal number of
nodes in each layer. B. and the correspon-
ding 8 values for other 1ayers must be re-
stricted to 1/2 to avoid instability in the

i,i+l

numerical solution. Bi is defined as
2 ¢cit
Bi n hi
hi hiy t
whereq=m-m=—-- and n—ﬁ

In the quoted numerical results g is equal
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to 10. This value was derived from a consid-
eration of the effect of number of nodes on
the numerical values of pore pressure.

The necessary and complete inter-layer
boundary conditions are

(wy; = @4,

Ju Ju
k; G2 G2l in1
As in any numerical technique several possi-
ble approximations can be obtained. If the
Terzaghi equation is combined with the contin-
uity condition then the finite difference
expression along the i, i+l, layer boundary is

i = ki

= 2a
Yr+l,s = Yr,s + Bi ( 1 + a) x
(“r,s—l + Yr,s + b("]r,s+l - ur,s))

where the integer "s" here defines the loca-
tion of the boundary and the subscript (i,i+l)
has been omitted from the "a" and "b" for
brevity. However, sme of this expression can
lead to an instability in the numerical solu-
tion for values of a in excess of 0.1. The
expression finally adopted satisfies the con-
tinuity condition, that is

U s = 3By X

((bur,s+1 + ur,s—l) (bur,s+2 + ur,s-z)]

The degree of settlement is given by the ex-
pression

u =1 -
s
1 1 1
= —— 8(3) + ---
2qu°(s(l) taT t@ e e )
1 1 o
@+ a,z2 * ay,z2.a2,3 )
where u_ is the initial uniform pore pressure,

and s(1f, s(2), --s(i) are defined as

s(i) = ug, + 2ug,,y + =77 Ugu
where s' is an integer defining the upper
node of the ith layer (=(i-1)(g+l)), and s"
is an integer defining the lowest node of
the ith layer (=(i)(g+1)).

For a two layer soil the expression simpli-
fies to

v =1 1

s —W (as(l) +5(2)]

An alternative numerical procedure has been
given by Abbott (1960) and an electrical
analogue technique has been described by
Christie (1966).

SPECIAL CASES
There are two special cases in which the

settlement time relationship can be derived
from the solution for a homogeneous layer.
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Swecial Case A

1+ was first suggested by Glick (1945) in
the discussion to Gray's paper that if the
denth, z within the i%" layer is trans-
formed by the relationship

OIOI

Zo e 2
T
then the diffusion ecuation

L, ¢ 2%
t QzT‘

oy

l>rcomes common to all layers, that is, the
transformed single layer of total thickness

i=n =

HT—.E R of e

i=1 i c;
is eguivalent to the layered system with re-
spect to the basic diffusion equation. For
complete equivalence the inter-layer contin-
uity condition must also be satisfied. This
leads to the condition that

ki o / cy

Ki+l1 WV Ci+l

or a or a, =1 for all i.

i,i+1 = Pi, i+l i,i+l
It can then be shown that the total transform
ed thickness is equal to the actual total
thickness.

HT = H
Thus the degree of settlement for this special
case, when all the a's are unity, is given
directly by the ordinary Terzaghi solution,”
provided ¥ is used as the coefficient of con-
solidation.

Special Case B

Employing the thickness transformation of
special case A to a two layer soil deposit
subject to two-way dainage (PTPB), the inter-
layer continuity condition is satisfied ir-
respective of the value of a if the transform-
ed thicknesses of the two layers are equal.
This occurs when a.b = 1.

It then follows that the degree of settlement
is given by the ordinary Terzaghi theory for
two-way drainage of a homogeneous single layer
of total thickness Hp and having a coefficient
of consolidation &. For example the time for
50% settlement is given by

- H_2
= e T _ 0.197a
Tso = _HSJ- = 0.0493 HT T —(1+a)2
The two special cases can be used as a partial
check on the accuracy of the numerical analys-
is.

MULTIPLC LAYER PAIRS

The rclationship between degree of settlement
and time factor for a soil deposit composed
of a finite number of identical layer pairs
lies between that for a single pair and that
for an infinite number of pairs. The
latter solution is given by the ordinary

Terzagai analysis for a single homogeneous
layer by equating the coefficient of consol-

idation in this analysis to © of the multi-
ple layer pairs.

The transition from the curve for a single
layer pair to that for an infinite number of
pairs can be seen in Figure 1 in which some
of the results of the numerical analysis for
the boundary conditions PTPB with a value of
the parameter "b" of 10 and various values
of the parameter "a" are plotted. Further
results for the drainage conditions PTPB

are shown in Figure 2, and for the conditions
PTIB in Figure 3. Figures 1 and 3 bring
out the point that relatively few pairs of
layers are required to ensure that under
these one-dimensional consolidation condi-
tions, a varved or laminated deposit effect-
ively behaves as a single homogeneous layer.
In Figures 1, 2 and 3 the time factor T,

has been employed. This is convenient in
separating the families of curves for diff-
erent values of "a". It also demonstrates
in Figure 2 that the curve tends to the
ordinary solution for one-way drainage of a
single layer (T, = 0.197 for Ug = 0.5) when
"b" is small compared with "a", since in
these circumstances, layer 2 is in effect
only an incompressible impermeable plate.

In Figures 4 and 5 some of the numerical re-
sults for a single pair of layers are _
plotted with the time factor defined as T.
These figures show how, with this definition
of time factor, the curve for an infinite
number of layer pairs is always identical
with that for a single homogeneous layer
whatever the values of the parameters "a"
"b" or "a", and furthermore, that this par-
ticular curve is the curve for a single (or
any number) pair of layers when a = 1 as
explained under the heading special case A.
This last point is also apparent in Figures
1, 2 and 3 (when a =1, a = b), the slight
discrepancy in Figure 2 being an indication
of the order of accuracy of the numerical
analysis.

The curves in Figure 4 (PTPB) also apply to
values of "a" and "a" which are both the in-
verse of those specified in the figure,
whereas inversion of these quantities for
Figure 5 (PTIB) renders the curve applicable
to the drainage conditions ITPB.

Figure 1. Rate of Settlement. Multiple Layer
Pairs. b=10 (PTPB)
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Figures 2 to 5. Rate of Settlement for Multi-

ple Layer Pairs.

TWO LAYER SYSTEM

The presentation of a sufficient number of
time-settlement curves to cover the full range
of practical values of "a" and "a", even for

a two layer system, would take too much space.
However, Figures 1 to 5 show that, at least
for degrees of settlement in excess of 0.2

for PTPB and 0.4 for PTIB, the curves for a
single layer pair are all geometrically simi-
lar in shape and similar to that for one homo-
geneous layer. Thus it should be adequate for
most practical purposes to have the time for
50% settlement and to rely on the shape simi-
larity to obtain the rest of the time-settle-

ment curve. r
used to derive contours of Tso (for Ug
on a plot of "a" and "a" as shown in

The numerical results have been
0.5)
Figure

6 for PTPB and in Figure 7 for PTIB.
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A :
.("
s polo |l
Figure 6. Contou: pu - Two Layer Soil.
(PTPB

Figure 7. Contours of Ts, for two layer soil.
(PTIB)

For the condition PTPB, inversion of both "a"
and "a" must lead to the same value of Tsg.
The symmetry following from this requirement
is evident in Figure 6. There is no corres-
ponding symmetry in Figure 7 (PTIB) but in-
version of both "a" and "a" on this figure
gives the values of Ts, for the condition ITPB.
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Certain limiting cases an. i ¢ speclal
cases A and B already explained can help to
confirm the contours obtained from the numer-
ical analysis. For a b, that is a = 1, T,
must bc equal to 0.0493 for PTPB and 0.197
for PTIB so that the contours of these values
arc the abscissa of cach plot. For PTPB the
sccond special case of ab 1 allows the de-
termination ,of Ts, along a straight line at a

slope of 2 to 1 on a log-log plot {(a? = a).
The limiting cases arc as follows

prPB (i) m, - 0, a » =, a » » but b finite
PTPB {(ii) k; = =, o + 0 but a finite
PTIB (i) m, » 0, a = ®, a - « but b finite
PTIB (ii) m, - 0, a = 0, a » 0 but b finite
PTIB(iii) k; = «@, a » = but a finite
PTIB (iv) k; » ®, a » 0 but a finite

The analytical expressions for these limiting
cases are given in an Appendix. The contours
in Figures 6 and 7 merge into the limiting
lines given by these expressions. The con-
tours also agree with spot values derived
from analytical results given by Gray (1945)
and by Barber (1945). Thus there is adequate
confirmation of the reliability of the main
numerical calculations.

IMPERFECT POROUS PLATES 1IN OEDOMETER TESTS

As recognized by Gray (1945), the limiting
case PTIB(ii) is relevant to an oedometer test
in which the soil specimen is loaded between
two equally imperfect porous plates. Curve A
of Figure B8 gives the results of calculations
for this limiting case in a form suitable for
assessment of the effect of inadequate perme-
ability of the porous plates. For example,

if the thickness of each plate is equal to
half that of the specimen, the coefficient of

permeability of the plates has to be less than

twenty times that of the soil for the time
for 50% consolidation to be increased by more
than 20%.

Figure 8. Oedometer test - effect of imper-
fcct porous plates.

Curve B in Figure 8 has been calculated from
limiting case PTPB(i) and, in the present
context, is relevant to an oedometer test
with only one imperfect plate.
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APPRONIVATI
DEPOSITS

MLTi'ODS FOR MULTIPLE LAYER SOIL

There are several possible approximate methods
for predicting the rate of settlement of a
layered soil deposit. Two of these methods
will now be considered in detail.

The simplest method is to treat the whole de-
posit as a single homogeneous layer having a
coefficient of consolidation equal to c, the
rate of settlement being given by the ordinary
Terzaghi theory. This is the method proposed
by Terzaghi (1940).

The second approximate method is to employ
the thickness transformation specified under
Special Case A even when the valuesof a are
not unity. The distribution of pore pressure
within the total transformed depth can then
be taken as that given by the ordinary Terz-
aghi theory. However, in order to take into
account the different values of the coeffici-
ent of volume decrease, m of the several lay-
ers, calculation of the degree of settlement
requires evaluation from the Terzaghi theory
of the degree of consolidation within only a
portion of the total depth. On this basis,
Figure 9 enables the degree of consolidation,
U; for the i th layer to be calculated. The
degree of settlement of the whole soil deposit
is then given by
tm.h. U,

iviTi

Im.h.

il

U
s

Figure 9. Chart for layer transformation methcd

As already explained, this second approximate

method is only exact when it reduces to
Special Case A, i.e. for all layers a is unity
or ™ = p?¢c = constant.

w
A stgdy of the available data on a variety of
soil types suggested that,the value of m’c is
of the order of 0.1 x 10~ ft®/tons? day. The
range of m?c in this study was 0.01 to 1 x 10
ft%/tons? day so that, on this evidence, a
can range from 0.0l to 100 if the extreme
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combinations of soil types are taken.

To establish the extent to which the lack of
a correct interlayer continuity condition af-
fects the time factor calculated by the sec-
ond or transformation method, reference is
made to Figures 6 and 7. In these figures re-
gions are indicated by hatching where this a-
pproximate method leads to a ts¢ less than
two thirds of the correct value. Elsewhere
within the figures the approximate value is
within two thirds to three halves of the cor-
rect time.

The first approximate method leads to an an-
ser, to within the same accuracy range, for
combinations of "a" and "a" bounded by the
contour Ts, = 0.0329 for PTPB, and between

the 0.131 and 0.296 contours for PTIB. Thus
it is evident that the second or transformed
layer method has a greater range of applica-
bility.

This evidence suggests that the transformed
layer method could find application in a prac-
tical case of heterogeneous multiple layers
provided the "a" and "a" values of each adja-
cent layer combination lie within the range
where the errors in the two layer soil de-
posit are deemed to be acceptable. A complete
coverage of results for multi-layered deposits
is, of course, a practical impossibility. If
theoretically correct settlement rates were
essential for any particular problem then
special solution of that problem by a computer
programme would be necessary. However, if a
rapid manual calculation is required and some
degree of approximation is acceptable, then
the transformed layer method can be considered

To examine further the effectiveness of the
two approximate methods in particular cases of
multiple layers, two four layer soil deposits
were analysed by the finite difference pro-
gramme. The curves of degree of settlement
versus time factor are shown in Figures 10 amd
11 for the boundary drainage conditions PTPB,
PTIB, and ITPB.

Case 1 (Fig.l10) is for a fairly extreme range
of a's but except for the drainage condition
PTIB, the second approximate method is in sat-
isfactory agreement with the correct solution.
The results of the comparison, including the
first approximate method are summarized in
Table 1 on the basis of the time for 50% set-
tlement. Here it can be seen that for Case 1,
the first approximate method can be greatly in
error.

Figure 10. Rate of Settlement for four layer
soil. cCase 1.

Table 1 T;, values for two cases of four
layer deposits
Case Drainage Approx. Approx. Correct
Method 1 Method 2 Solution
1
(Fig.10) PTPB .049 .019 .016
PTIB .197 .123 .230
ITPB .197 .088 .078
2
(Fig.l1l1l) PTPB .049 .033 .057
PTIB .197 .155 .185
ITPB .197 .170 .220

A

Figure 11. Rate of Settlement for four layer
soil. Case 2,

Case 2(Fig.ll) constitutes a much less severe
combination of layer parameters and from Fig.
11 and Table 1 it is evident that both approx-
imations might be considered acceptable.

It is recognized that the evidence from the
above cases of four layers, and that previous-
ly presented for two layers, is inadequate for
definite conclusions to be drawn on the accur-
acy of the approximate methods for all poss-
ible multi-layer deposits. It would frequent-
ly be necessary to exercise personal juigement.
However, there is the fundamental objection to
the first approximate method that no account
is taken of the layer sequence. The transform-
ed layer method on the other hand does take
this aspect into account, although not neces-
sarily giving the sequence the right emphasis.
It is worth noting that, for the four-layer
cases considered above, the approximate trans-
formed layer method has an acceptable accuracy
when the pairs of values of "a" and "a" all
plot as points outside the hatched areas in
Figures 6 and 7, but, when at least one of the
points lies within the hatched area, the ac-
curacy may or may not be acceptable. It may
well be that this is generally true and not
only for the examples given. Certainly if all
pairs of values of "a" and "a" for a particu-
lar multilayer deposit plot within a hatched
area, the approximate transformed layer methad
is very unlikely to be satisfactory.
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APPENDIX
LIMITING CASES FOR TWO-LAYER DEPOSITS
PERMEABLE TOP, IMPERMEABLE BOTTOM (PTIB) (i)

me, = 0
m1h1
Hence a = —— = o and o = ™KL = o
mzhz mzkz
_hike L oes
but b = hk, 1S finite
i.e. layer 2 has a finite permeability and

thickness but is incompressible. Therefore,
because the bottom boundary of layer 2 is im-
permeable, it effectively supplies an imperm-
eable boundary to the bottom of layer 1. The
consolidation of layer 1 must then be governed
by the ordinary Terzaghi theory for one-way
drainage.

Thus Ug = Ug
where U, is given by the Terzaghi theory for
a time factor,
cit
T, = ==
! hi1? _
and T = —E—Tl where T = E;
1+b H
= _0.197b
For example, for Ug = 0.5, Tso = TS

PFRMEABLLE TOP,

mjy 0
Hence a [ 0 but b is finite
i.e. layer 1 has a finite permeability and
thickness but is incompressible. It therefore

IMPERMCABLE BOTTOM (PTIB) (ii)

7n

impedes the consolidation of layer 2 but does
not contribute to the total settlement.

33 _ (14b) %—%

In layer?2 =
where distance from bottom of layer 2 is zh,.
With boundary conditions
(%% 2=0 ~ o'(%%)z=l =_% (u)
solution is

sinxncos(x z)

and (u)= =1,

z=Y T=0

= 2 _
U= 2 L Tiwsinaeosn) oXP (A (140)T)
n=1"'""n
and sin Xn ,
Us = 172 Y A (A *sinX cosX )eq{ A 2 (1+b)T)
n=1l "n
where the An s are the roots of cotxn = bxn

PERMEABLE TOP,

ki

Hence a = « and b 0 but a is finite

i.e. layer 1 is compressible but fully perme-
able so that it does not impede the drainage
of layer 2 but makes an immediate contribu-
tion to the total settlement. Thus consolida-
tion of layer 2 is governed by the ordinary
Terzaghi theory for one-way drainage.

a + Ur
s T +a
is given by the Terzaghi theory for
factor defined as 2% (l1+a)T.
h,?

IMPERMEABLE BOTTOM (PTIB) (iii)

For the whole deposit, U

where U
a time

PERMEACLE TOP, IMPERMEABLE BOTTOM (PTIB) (iv)

k1=m
Hence a = 0 and b = = but a is finite
i.e. layer 2 is compressible but fully perme-

able so that at all depths it has a pore pres-
sure equal to that in layer 1 at the inter-
face, and the rate of flow of water out of
layer 2 into layer 1 is proportional to the

rate of compression of layer 2.
2u _ (l+a) 2%u
In layerl T 3 om

where depth below top zhi

With boundary conditions

. du _¢3%u =
(), _q = O~ a(sf)z=l _(357)z=fand (W30 L.
solution is 2 _
L (l—cosx )sin (X _z) (1+a)T
u=2 (A —51nx nCO8X ) exp a
n=1
and '
" 2 E (l-cosxn)(a-acosxn+xn51nxn) )
s 1+ nel xn(xn—51nxncosxn)
-an(1+a)f
eXp \— 3
An
where the An's are the roots of cotAn = -3

PERMEABLE TOP,
0
a

PERMEABLE BOTTOM (PTPB) (i)

m
Hence

2
a but b is finite
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i.c. laver 2 has a finite permeability and
thickness but is incompressible. It therefore
impedes the consolidation of layer 1 but does
not contribute to the total settlement.

In layer 1
g 1l+b 3?2

b

2
c

z?

ale
ol

where depth from top is zh;.
With boundary conditions

u

(U)z=0 = 0'(32]z=1 = -b(u)z=l,and (u)?=0 =1
Solution is

» (l-cosk )sin(} z) -x_2(1+b)T
4= Znil (An-sinkncosAnT exp b
and
' » (1-cosA_)* A2 (4D)T
Ug = l-znzlkn(kn-51nAncosAn) exp[—————s————
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where the An's are roots of tan An =

PERMEABLZE TOP, PERMEABLE BOTTOM (PTPB) (ii)
K, = =
Hence o = 0 and b = = but a is finite
i.e. layer 2 is compressible but fully perme-

able so that it does not impede the drainage
of layer 1 but makes an immediate contribu-
tion to the total settlement of the whole de-
posit. Thus consolidation of layer 1 is
governed by the ordinary Terzaghi theory for
two-way drainage.

Degree of settlement of whole deposit,
1+au
U =_T

s l+a
where Uq is degree given by Terzaghi theory,
the timé factor being 4c,t/h;? if this factor
is defined in terms of the half thickness for
two-way drainage in the conventional way.

F-Ctrayct
Then T = 5 kl+a] e



