INTERNATIONAL SOCIETY FOR
SOIL MECHANICS AND
GEOTECHNICAL ENGINEERING

SIMSG [} ISSMGE

s

This paper was downloaded from the Online Library of
the International Society for Soil Mechanics and
Geotechnical Engineering (ISSMGE). The library is
available here:

https://www.issmge.org/publications/online-library

This is an open-access database that archives thousands
of papers published under the Auspices of the ISSMGE and
maintained by the Innovation and Development
Committee of ISSMGE.



https://www.issmge.org/publications/online-library

ANALYSIS OF SOIL EMBEDED STRUCTURES
CALCULATION DES CONSTRUCTIONS ENFORCEES DANS LE SOL

M. I. GORBUNOV-POSSADOV, Professor D. Sc. {Eng)
S. S. DAVYDOV, Professor, D. Sc. (Eng)

A. B. OGRANOVICH, Engineer, L. N. REPNIKOV, Cand. Sc. (Eng)

Scientific Research Institute of Foundation and Underground Structures Moscow, USSR

SYROPSIS

The firet part of the paper discusses structures operating near the surface of a base
/anchor plates, sheet pile walls, pilees/, taking into account that the anchor and sheet
pile break the elastic half-space and that in driving the pile the soil is pushed of and
solidified. To allow for the break, distributed double forces are used.

In the gecond part a method is proposed for analyeing an arched structure deeply im-
bedded in a non-rooky ground operating in the elastic and the elastic-plastic stages. The
s0il 1s regarded as elastic layer /two-dimensional problem/, assuming zero displacements
along the lower boundary of the layer. In the elastic stage the solution is given in the
form of ready design expressions. In the elastic-plastic stage the associated features

of structure design are demonstrated.

In analysing soil-embedded structures
it is assumed that the soll operates as an
elastic half-space. The firet part of the
paper (M.I.Gorbunov-Possadov, A.B.Ograno-
vich, L.N.Repnikov) discusses structures
operating near the surface of a base (an-
chor plates, sheet pile wallse, piles).
Allowance is made for the facte that the
anchors and the sheet pile break the elas-
tic half-space and that when the pile is
driven in, the soil is pushed of and soli-
dified. In the second part S.S.Davydov
proposes a method for analysing an arched
structure deeply embedded in a nonrocky
ground and operating in the elastic and
elastic-plastic stages. When a structure
oparates inside the soil (sheet pils walls,
piles, anchor plates, etc.) the utilisatim
of a model of an elastic half-space in
etrength and strain analyeis yilelds resultes
closely approximating actual conditions,
since the appearance of plastic strains
within the eo0il is impeded by the addition
of ite own weight, the soil 1e solidified
by thie weight, and the bearing areas of
the structuree are not so large (Gorbunov-
-Possadov, 1967).

In this case the advantage of the mo-
del of an elastic half-space over the
¥inkler hypothesis is that it takes into
account not only the distributive ability
of the soil, but also the decrease in the
resistance to base strains near the surface

The firet attempts to use a model of
an elastic half-space for analysis of
structures near the surface of the ground
were made in analysing piles for a hori-
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eontal load (Zhemochkin, 1948) and for a
sheet pile wall (Krachmer, 1956), also for
a rectangular anchor plate (Douglas and
Davis, 1964). Theee authorse, however, did
not allow for the break in the continuity
of the base (an opening) caused by the
structure body. According to these solu-
tions,therefore, in the upper portion of
the struoture the soil was subjected to
compression in front of the structure and
to tension behind it. In the lower portion
of the structure the situation was reverseed
(see diagram in fig. 1(a); tensile stresses
are regarded as positive). In actual fact
80ll is not subjected to tension; for this
reason the resistance of eoll to displace-
ment os overstated when using a diagram of
a continuous elastic half-space.
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Pig.1. Diagram for analysing a estructure
operating within an elastic half-space:
(a) without and (b) with allowance for a
break in contimuity.
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A correct solution can be obtained by
using a diagram according to which the
structure is inserted in the slot in the
elaetic half-space (fig. 1(b)). In this
cage the soil will only be subjected to
compression on that side of the structure
to which it is displaced. On the other
side there will be either no soll pressure
on the wall ( in the case of cohesive
soils), or active pressure will manifest
itgelf, or else pressure will arise from
the heaping of the ground, i.e., from its
elastic displacement toward the structure
by gravity.

As proposed by M. I,Gorbunov-Possadov
(ogranovich and Gorbunov-Possadov, 1966;
Gorbunov-Pogsadov, 1967), the effect of the
opening in which the structure is inserted
i8s obtained by using the double forces
distributed continuously along the struc-
ture body, We will recall that a double
force D, is a load obtained in the limit
from two equal and opposite point forces,
P, on yheir unlimited mutual approach and
when the product D = Po (where O is the
distance between the points) is constant.
The forces are directed along the line
passing through the points of their appli-
cation. If, for instance, the forces P are
directed along the x-axis, the solution
for the double force D is obtained from
the solution for P by differentiation with
respect to x (Timoshenko and Goodier,1951).
It will be shown below that continuously
diptributed force couples break a half-
plane or half-space and form an opening.

A solution for a vertical and a hori-
gontal forces applied inside a half-plane
ig given by E.Melan (Melan, 1932). As re-
garde the horizontal force, however, this
solution 18 in error. In the formula for
horizontal stresses the term

22
should be raplaced by
2 _ adx - 2!2
4
2

Besides, E.Melan did not supply a for-
mula for displacements. A correction of
Melan's formulas for stresses and the deduc-
tion of displacement formulas have been
made by us (Gorbunov-Possadov, Shekhter,
Kofman, 1954} Gorbunov-Possadov, 1964).

A solution for a point force in an
elastic half-space was obtained by R.Mind-
lin, 1936; Mindlin and Chen, 1950). The
same author supplied the expressions for
kernels for force couples in an elastic
half-space through the Galerkin vector.

Analysis of a sheet n;}e wall has been
performed by us in two versions: for a ri-
gid wall (Ogranovich and Gorbunov-Possadov,
1966) and for a flexible wall (Ogranovich,
1967). We restricted ourselves to a scheme
where a point horizontal force P and a mo-
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ment M are applied at the upper portion of
the wall coinciding with the free surface
of the ground. The heaping of the ground
is taken into account as a uniformly dis-
tributed load on the surface of the half-
plane to one side of the wall,

Now we will state briefly a more gene-
ral case of a flexible wall (fig.2). We
will assume that the ground is dense clay,
the weight of the mound is insufficient
for closing up the opening, and complete
closing up of the opening is not achieved
(we have also investigated other cases
where the opening closes up but a break in
the stresses occurs just the same),
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PFig.2. Analysis of a flexible sheet pile
wall,

The wall thickness is assumed to be
negligibly small, although, as will be
shown below, it is quite possible to make
allowance for the wall thickness. The effect
of the gone of limiting state of the ground
at the top of the wall is also ignored;
the error introduced by this assumption is
partly smoothed out by the above-mentioned
increase in the deformation of the medium
at its surface as in the solutions of Me-
lan and Mindlin.

The boundary conditions on the surface
of the ground are satisfied automatically
by using Melan's solution, The boundary
conditions to the right (y = +0) and left
(y = -0) of the wall (fig.2) will be differ-

ent. Assume that the point at which the
reaction pressures pass over from ome side
of the wall to the other and where the
width of the opening is zero is located
at a depth nh, where h is the depth of the
embedding of the wall. ‘hen the boundary
conditions for a smooth wall will be:

at x < nph, y = 40, éy= 0, Zy = 0
y=~0, Yavw, 2;730 (1)
at X >2nh y = +0, Yayv, Zy= 0
y = -0, 6,- o, T,_y- 0

Here Y and v are the deflection and
displacement of the soil, respectively.
Since in a two-dimensional problem dis-
placements are determined to within the
additive constant, it is conventionally
agsumed that the lower end of the wall
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suffers no displacement.
We will now use reduced coordinates

= x/h 7 = y/h. To fulfil the boundary
conditions (I) we apply to a continuous
half-plane, along the x-axis. over a seg-
ment 0<£ = 1, fictitious loads in the
form of usual horizontal forces distri-
buted ascording to the law

7(<)=l§o gi é‘L (2)
and of horizontal double forces
de&)=2 d,& 3

The solution can be made more precise
by introducing a fictitious load from the
vertical self-balanced forces.

The power of the polynomials (2) and
(3) depends on the desired accuracy. In
our solution, m wae taken as 4.

The unknown coefficient q% and dé
should be so determined that the boundary
conditions will be best satisfied (I).

According to Melan's solution the ho-
rizontal stresses from loading by forces
(2) have a discontinuity along the x-axis;
therefore, if the direction from right to
left is considered positive for these
forces, the stresses are determined by the
equation

G (4 )0~ F 2 9: 50 (4)

(Compressive stresses are taken as posi-
tive, tensile as negative).

The horizontal stresses from the dis-
tributed double forces are determined by
integrating the stress formula for double
forces D distributed according to the law
(3) along the vertical axis of the sheet
pile wall., In addition, account is taken
of the "elastic" pressure of the soil due
to its own weight and that of the mound,
by multiplying the corresponding vertical
stresses by the coefficient of lateral
pressure £.=V/(7/—V) , Where ) is
Poisson's ratio of the soil.

The distributed double forces do not
cause any tangential stresses along the
surface of the sheet pile. In determining
horizontal displacement use is made of the
fact that double forces produce a break
in displacesnents which is determined by
the equation

_ch(1-9%) & i
VE)eo=F A2 5 d, & 5)

The tangential stresses to either
side of the sheet pile are thus determined
by integrating, over the length of the
sheet pile, of the formula for tangential
stresses due to horizontal forces distri-
buted according to the law (2). Horizontal
displacements are determined by integrat-
ing the formula for these displacements
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due to the double forces (3), adding the
displacements due to the distributed ho-
rizontal forces.

The displacement (deflection) of the
wall is described by the conventional dif-
ferential equation:

*

D 9*y -
where /" is the cylindrical rigidity of
the wall.,

The value &,(4) 1s determined in
equation (6) at the upper and lower por-
tions of the sheet pile, allowing for all
the above-1isted features.

By integrating equation (6) four ti-
mes in succession we obtain the values of
displacements and substitute it in the bo-
undary conditions (I),

Thus, all boundary conditions are ex-
pressed through the unknown parameters q
and dy. These parameters are so determi-
ned tgat the boundary conditions are ex-
pressed to the best advantage in the sense
of the least squares. To this end we use
the method suggested by one of the present
authors for any boundary conditions (Gor-
bunov-Possadov, Shekhter, Kofman, 1954),

This method imposes, not the condi-
tion of the minimum for each integral
(taken separately along the boundary) over
the squares of deviation of the given mag-
nitude, included in the boundary condi-
tions, from its true value, but the con-
dition of the minimum of the sum of all
these integrals. Besides, depending on
one's wish, each of the separate condi-
tions can be assigned a higher or lower
relative value by introducing the corres-
ponding welghts., The value of the weight
for each of the conditions may also be va-
riable over the length of the segment alorg
which the boundary condition is imposed,
This is particularly important, because in
our problem a number of integrands convert
to infinity at £ = 1; the weight function
was taken as £(£ ) = }/7-£7 . Subsequently
the problem is solved with the aid of the
theory of the conditional Lagrange extreme,
by adding those conditions which should be
fulfilled accurately: the equilibrium con-
dition, the condition that the horizontal
stresges at point n should Ve zero, and
the condition that the w’i.h of the open-
ing at the lower end of tiie sheet pile
should also be zero.

Teking partial derivatives from this
sum over the unknown coefficients q4 and
d; and equating these derivatives to zero
wh obtain a system of simultaneous equa-
tions for determining the unknowns. We ha-
ve to preassign the value of n and, by sol-
ving a number of systems for different va-
lues of n, to choose the one at which the
width of the opening at the point = n is
zero, negative values of the width being
absent, When taking into account the
thickness of the sheet pile the width of
the opening at the point { = n should be
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equal to this thickness. The work 1le per-
formed on electronic computers.
The analysis should be made for the

sum of both loads, P and M, simultaneously,

since the law of independent action of the
forces is not fulfilled any longer when
the opening 18 taken into account.

If only a system of distributed ver-
tical and horizontal forces is applied to
a segment, we achieve the effect of taking

into account, the appearance of a hair crack

in the base without a structure inserted
in 1it.

M
f\“’ oﬁiﬁiii%iﬁflif}- y

—_— -4

Fig.3. Results of analysis oi a rigid wall:
(a) curve of horizontal presgsures
on the wall;
(b) curve of bending moments

Pig.3 shows the results of an analy-
sis of a rigid wall subjected to the ac-
tion of a force P = 5 t/m at the surface
of the ground No mound is present. The
depth of embedding h = 2m,_the unit
weight of soil ) = 1.6 t/m3, £ = 0.54. It
was established by trial and error that
n = 0,71. The moments are referred to a
section 0.4 m wide,

The solution fo gnchor nlates was
performed by L.N.Repnikov. a plate 18
embedded parallel to the horizontal sur-
face of the ground, has the shape of an
elongated rectangle and is being pulled
by a vertical symmetrical load, analysis
is made in conditions of a two-dimensional
problem of the theory of elasticity. Por
smooth rigid plate the conditions are im-
posed that vertical displacements at the
upper boundary be constant, and no verti-
cal normal stresses be present at the low-
er boundary; besides, there should be no
tangential stresses to either side of the
slot. The summary area of the diagram of
normal stresses at the upper boundary of
the slot should be equal to the pulling
force. To fulfil these boundary condi-
tions, fictitious loads from vertical and
horizontal forces, as well as from verti-
cal double forces, are distributed along
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the opening according to polynomial laws
For small depths of plate embedding use

is made of Melan's formulas, for large
depths similar formulas for a continuous
half-plane (Timoshenko and Goodyear, 1951)
are uged., For the case of a plate embedded
at a depth equel to half-width of the
plate the results of the solution through
fourth-power polynomials are given in
fig.4.

o
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n-".~-‘.uv.<.‘,,'. RIRTR IR RN A

(_]) v Okv
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Fig.4. Analysis of an anchor plate is con-
ditions of plane strain (Poisson's ratio
of the soil V = 1/3): (a) layout diagram;
I - at a depth equal to half-width; II -
at a depth equal to quarter-width. For
case I the width of the slot is shown in
fractions P/B; (b) diagrams of reactive
pressures for cases I and II in fractions
of their mean value, pp; (c) diagrams of
streases in fractions of p, for cases I
and II at the lower side o? the slot, ser-
ving as criteria of the accuracy of the
solution,

Two cases of embedding are discussed:
I - at a depth equal to gquarter-width of
the plate and II - at a depth equal to
half-width of the plate (fig.4a). It can
be seen from fig.4b that the closer the
plate to the surface, the more the reac-
tive pressures concentrate towards the
edges of the plate., Figure 4c shows the
design values of the vertical stresses
along the lower boundary of the slot.
Their true value is zero, therefore the
diagrame serve as the evaluation of the
general accuracy of the solution,

In solving a three-dimensional prob-
lem on pulling a round horizontal anchor
use is made of Mindlin's formula for
small depths of embedding and of Kelvin's
formula for large depths (Timoshenko and
Goodier, 1951).

Analysis of round-gection driven

[ r verti e made with
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the aid of Mindlin's solutions for
tinuous half-space, but as regards
half-space ocoupled by the pile we apply a
fiotitious load which provides the necessa-
ry boundary conditions on the surface of the
pile, Por driven piles, theae conditions
ares

(I) Under the assumption of complete
adhesion between the piles and solil

a) equality of displacements of
any point of the surface and end-face of
the pile to the displacements of the contae-
ting point of the base ( Wp = Wg ), and

b) displacement of soif particles
which before the driving of the pile, had
been located at the axis at a distance
equal to the pile radius ( U = ;).

(2) If in solving the problem accord-
ing to the first version of the boundary
conditions the inequality 7.,>6.ig¢+C
(where ¥ - friction angle and ‘c adhesion
between the pile and soil, or between the
poil jacket and the soil) obtains at indi-
vidual areas of the pile surface, in re-
fined calculations one should take into
account the slipping of the pile relative
to the soil at these portions, and the con-
dition W,=W; should be replaced here by

& con-~
the

the conditions 7,,.=6,tgy+C . At
the other portions the condition Wy = W
remains valid, The precise position of the

boundaries of the areas is found by success-
ive approximations. With this formulation
of the problem the relationship between the
load on the pile and ite subsidence ceases
to be linear (Gorbunov-Possadov and Sivtso-
va, 1966).

When solving the problem in any of
these formulations we apply, along the en-
tire length of the pile, a frictitious ver-
tical load distributed according to the po-
lynomial law with unknown coefficients, si-
milarly to the manner the horizontal load
was apglied in analysing the sheet pile
wall. In sdditions, a load of unknown in-
tensity q distributed uniformly over the
surface area of the end-face is applied at
the point of the pile.

This solution of the problem makes it
possible to establish separately which part
of the external load is transmitted to the
goil by the surface of the pile and which
by ite point.

A second boundary conditions on the
surface is the constant value of the hori-
zontal displacement of the soil., For driven
piles one should make allowance for the
fact that pile driving is accompanied by the
displacement of the soil away from the axis
of the cylindrical volume filled by the pile
after the completion of the driving, towards
ite surface. This effect can be obtained by
using a cylindrical vector field of radial
double forces. This field cannot be uniform,
because otherwise a break in the continuity
of the medium would occur at the boundary of
the point being displaced. To avoid a break,
the double forces at the cylinder surface
should vanish. As a first approximation we
used the distribution of double forces of
constant intensity along the vertioal,whioh,
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however, obeyed the tri le law (with a
gero ordinate at the edge) alo the hori-
zontal (Gorbunov-Possadov, 1968). Tenta-
tive calculations showed that transition
from a three-dimensional axisymmetrical
problem to the conditions of plane strain
is possible by using the stresses from
double forces in the continuous plane of
S.P.Timoshenko as starti formulas (Timo-
shenko and Goodyear, 1951). It was found
that in this case the displacement of the
soil particles which had previously been
located near the cylinder edge was equal
to one third of its radius. An accurate
law of the distribution of double forces
can be obtained by proceeding from the
requirement of the minimum displacement

of the extreme points, which is associated
with the condition of the minimum of work
of the whole 5801l maseif during displace-
ments. Thus, the precise value of the dis-
placement of the extreme points should be
less than one-third of the radius, this be-
ing in agreement with the experimental data
on the thickness of the soll jJacket,

It is not necessary to solve the prob-
lem in this rigorous formulation for taking
into account the solidification of the soil
aspociated with the driving of the piles,
and the corresponding increase in friction
along the surface of the piles in the group.
It is quite permissible to use the Saint-
Venant principle for replacing the cylin-
drical vector field by a system of pairs
of mutually perpendicular continuously dis-
tributed along the pile axis, provided that
the intensity of these forces is equal to
the sum of volumetric double forces at
each cross section of the pile.

Now we proceed to analysing an arched
structure daaply embedded in a non-rocky or
half~rock ground operating in an elastic
and elastlo=-plastio e@tage

A monolithic or assembled monolith-
like structure erected in a soft soil is
aharacterised by the following features:
reinforcement of the roof whioch always has
curvilinear outlines: rigid walls, whose
straing may be neglected: the presence of
a trough which may be flat (its weight toge-
ther with preparation counter balances the
pressure from the side of the pit foot), or
may be assumed to have the shape of an in-
verted arche

S8uoh a structure usually oonsists of
the following basic elements: the upper elas-
tio arch (II), the latersl rigid walls (I),
and the lower flat (1IV) or arched trough
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Fig.5. Elements of e structure in a non-
rocky ground.

By deep embedding we mean such embedd-
ing where the rock pressure on the struc-
ture does not depend on it any longer. Aa-
cording to K.Tertsagi this will take place
at (fig.5):

H=5a,

a=a+h,tg(45°-%/2) (7

where H -~ 1@ the thickness of the ground
above the pit, &, - the size of the ja-
cketing.

An underground structure involves in
its work a certain part of the surrounding
ground, resulting in the formation of a
compressed layer of ground whose thickness
is determined by the methods of soil mecha-
nice.

In 1934-35 the author for the first
time suggested and published a method for
analysis of an underground structure as a
statically indeterminate system operating
in an elastic medium, obeying the Winkler
hypothesis. This method has gained wide
acceptance, however it was based on inde-
terminancy depending on the bedding value
of the ground.

Indeed, let us assume that two monoli-
thic structures, one with a large span and
the other with a small one are erected in
the same ground (fig.G)r The structure

AALNLESAANAANNANN AN AN

[ H"Ll -

Pig. 6. Compressed layer of an arched
structure with a large and a small spans.

with a large span forms a compressed layer
of considerable thickness, Hq h and Hq ,
the structure with a small span - a thinner
layer, Hy j, and H; y. Assigning a physical
meaning t& the witt]er hypothesis and com-
paring it with Hooke's law, we get

G=Ky s 6=Eg=El§=/\’y (8)
As a result we find the bedding value:
K=E/H (9)

For our cases we obtain:
K=Efty; /‘/2=EO/H2 > K, (10)

Taking into account that the soil is
the same in both cases and has a modulus
of deformation of EoP and BoV, we see that
the bedding value depends on the structure
and is not objective characteristic of the
soil.

For this reason methods of analysing
which are based on the use of the bedding
value cannot evaluate the stresses and de-
formed state of the system.

In 1939 a method was published which
uged the theory of elasticity in analysis
of underground structures, this eliminat-
ing the above-mentioned indeterminacy. Si-
multaneously a solution for an elastic lay-
er was given which was free from the ssump-
tion previously introduced by Melan.

According to the author's solution
(Davydov, 1950) the displacements of the
elastic layer, in conditions of a two-
dimensionsl problem, multiplied by ZE£

are equal to (fig.7): 1-9

y=T+/1 (1)

P=pr=1

Pig.7. Settlements of the surface of an
elastic layer

where

T=405 thfsin[ 322k + sinf32Y g—/)]} (12)
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(145 hsinBEA- Tk o

/

K= (3-4y)7-H(7?-1)
TapY 1=V = (1-29, - H)(7*-1)

(14)

=cthfxt); =L (15)

Tables of settlements of an elastio
layer calculated by formula (11) at 1 = 10
c and H = mg¢ = ¢, 2¢, Jc, 4c, and 5¢ have
been compiled. Previously (Melan, 1919)
the problem of the elastic layer had been
solved under the assumption that at the
basic of the layer the shear stresses are
gero, 1.e,

y=H, Xy=%=0 (16)

This assumption enabled Melan to re-
place the elastic layer by a plate counter-
balanced by two forces and thus made it
impossible to take into account the speci-
fic features of the elastic layer. In the
authort's solution there is no such assump-
tion, and the displacements along the lower
and lateral boundaries of the layer are
taken to be zero., Comparing both solutions
for the case H = ¢ and 1 = 1oc we will find
the settlements of the surface of the elas-
tic layer which are shown in fig.7. The
difference in settlements is considerable
and exceeds 25% for their maximum values.
Settlements after Xelan are naturally al-
ways greater than the actual settlements of
the surface of the elastic layer.

The height of the elastic layer H will
be found from the condition

6const - 1,20 7

i.e. that the stressesat the foot of the
elastic layer at Y = H caused by the
structure should not exceed the stresses at
this point which acted before the structure
had been erected, by more than 20%.

In the elastic BtE‘. of operation the
basic system of a monolithic underground
structure according to the author's solu-
tion is such as shown in fig.8.

(=mMC=10C -

T 1H=-mL=0C

Melan's- ;~—
Author's<i [l =<8

H= 04

Fig.8. Settlement of the aurf;%? of an
elastic layer multiplied by ;_7r

The vertical and horizontal roek pres-
sures, as well as the pressure from the
side of the pit foot, 1s determined by me-
thods of rock mechanics.

The horizontal components of the volu-
metric forces of the soil which act on the
wall are calculated by the formula

Vo
&=T7=y; h (18)

where Hy 1is the distance of the cross sec-
tion from the top of the soil preassure
arch, The resultant of these forces - E,
counterbalances part of the structure
thrust.

The elastic effect of soft soil on the
wall 1s replaced by point forces, the num-
ber of which along each plane of the wall
should be taken at least as 4 as indicated
by investigations. In practice, a fairly
accurate solution can be obtained with 5
forces Xj and Yj. This figure is assumed
in further calculations.

The basic system, when eymmetrical re-
lative to the vertical axis (the basio case),
will have 17 unknowns - 4 stresses M, and
Hj; 10 forces of Bsoil counterthrust X; and

4/; the force of friction along the foot
X and 2 - displacement at the point of em-
bedding - ¥ and J), . In the absence of
symmetry the system has 32 unknowns. A
wall I embedded in several different soils
is made sufficiently rigid and its own
strains may be neglectedy All the unknowns
of a symmetrical system can be expressed
as a function of the rotation angle ¥
(Davydov, 1950). We have (fig.9):

=t =0 (19)
\ ‘i J M
\ /~:::fiq VO

- €

Fig.9. Basic system of monolithic under-
ground structure

The stresses in the elastic centre of the
upper arch will be:

M=M+A1 %, Hy=H, * Az 4, (20)

For the lower arch we obtain:
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MM A B AL S )

Here M; and H{ - moment and thrust for
an arch with embedded abutments;

A4 - coefficients depending on the
geometrical dimensions of the structure.

The stresse from the elastic counter-~
thrust of the ground along the lateral sur-
face of the wall are found from the solu-
tion of simultaneous equations of the type

Bys st Qe X, * .. 20 X, 1 (K=05)64,=0  (22)

Unit displacements are determined from
the expression:

ny = Yui (23)

where J,; - tabulated settlements of the
surface of the elastic layer.

By solving there simultaneous equatioms
we obtain

Xi=X;h, ¢ (24)

where X, = numerical coefficient.

The elastic counter-thrust along the
foot of the wall is found from the solution
of the system

0,5521“0")2*...fax,);—x—(/(-(),"i)cx_% =0
VY Ve Vo Yt @, =0 (25)

The last given equation is a supplementary
one., Unit displacements are also determined
from (23).

Solving this similtaneous equation we

obtain:
¥='\z’/h%*5z‘ @y (26)

Here Ai and 5} = numerical coefficient,
o 5
GL=:;§»;==<?w-i/II§ixi

where Ql = vertical component of all known
forces,
{1 = coefficient of friction between
b4 the soil and the wall,
The force of friction along the foot of
the wall is equal to

X=3X,~H, (21)

where H: = horizontal component of all
known force.

Thus,the solution of the system is re-
duced to the determination of one unknown-
the angle of rotation of the wall - ¢
which we find from the condition

2M=0
Solving tnis equation we obtain
___ 2Me+ Q.
TS+ + pych byt 2A (28)
where
AO=A,+KA2*A:+KZA.Z (29)

M’= moment of all known forces relative
¥ to embedding,
o; and KX; = numerical coefficients.
The values of the coefficients

and Ly have been calculated by the author
and are tabulated (Davydov, 1950). A dia-
gram of the counter-thrust of a soil opera-
ting in the elastic stage is shown in fig.
10.

x/ h, ’\
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Pig.10. Diagram of elastic counter-thrust
of soil

In the elagtig-plastic gtage of soil
operation which develops in time, diagrams
of soil counter-thrust acting on the wall
will change their shape.

This will take place at considerable
pressures of the wall on the soil, Ry, and
Ry, causing structural changes in the soil,
as a result of which plastic strains deve-
lop. We will denote by R, and R, the limi-
ting values of these pressures which cor-
respond to the linearly deformed state of
the soll. The basic system of the structure
(fig.9) retains ite nature.
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Pig.11. Diagrams of elastic-plastic counter-
thrust: (a) without and (b) with allowance
for soil solidification

Depending on the difference in pressures
AR=R-K , AKR=KR,~K, (30)
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Diagram of elastic-plastic counter-thrust
of the soil will take the shape displayed
in fig.11(a). In thie case the forcees Xj
and Yy which are in the plastic zone, will
be known and the corresponding equations of
the form (22, 25) will convert into iden-
tities.

Solving the remaining equations we will
find forces Xy and Y{ of the elastic zone
of soil operation.

FProm the equilibrium equation Mj we
find the angle of rotation of the wall and
calculate all stresses of our basic stre-
ture system., If we take into account soil
solidification in the course of development
of plastic deformation we will obtain the
ao%l)counter-thruet diagrams given in fig.
11 b L]

Having Prandtl'e diagram for a given
goil and allowing for its solidification,
we find K, ;. and K g, corresponding
to wall sgraina at its angle of rotation of

¥ o In this case the values of the strese-
es, Xj and Yj, which are in the plastic zone,
will change, but the general principle of
the problem solution remains.

Other values of rock pressure will also
correspond to the elastic-plastic stage of
structure operation, The vertical and hori-
zontal pressures of the soil on the struc-
ture should in this case be multiplied by
the coefficient (Davydov, 1954)

h
n=Limax
3 (31)
Here
a
— Smax - .
/]mal— p ) ﬁl— .}2 (32)
where S = limiting settlement of under-
max  ground structure
P = loosening coefficient of soft
soil
f = soil hardness coefficient af-
A ter Protodyakonov (Davydov,

1950)
Q, = dimension shown in fig.5.
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