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A ONE-DIMENSIONAL MODEL FOR PROGRESSIVE FAILURE.
UNE MODELE UNIDIMENSIONNELLE POUR LA RUPTURE PROGRESSIVE

J. T. CHRISTIAN, Assistant Professor of Civil Engineering
R. V. WHITMAN, Professor of Civil Engineering
Massachusetts Institute of Technology, Cambridge, Massachusetts, U. S. A.

SYNOPSIS A mathematical model for the progressive failure of a single layer bonded to a
rigid base is developed for elastic, plastic, and strain softening behavior of the bonding
material. Inclinations of the slope and frictional strength are included. The solutions
are presented in dimensionless form and in terms of conventional soil mechanics parameters.
The initiation of a failure surface is shown to depend largely upon the swelling potential
of the soil and the initial lateral stresses, and can occur even if the conventional factor
of safety against failure at peak strength is high. The extent of propagation of the
failure surface depends further on the residual factor of safety. A simple chart allows
these interactions to be studied easily.

INTRODUCTION

Skempton (1964) and Bjerrum (1967) have de- ial whose extensional strain is related to
scribed the failure of slopes cut into over- the tensile stress (or the decrease in com-
consolidated clays or clay shales and have pressive stress) by a modulus, E. This mod-
shown that such failures can occur as the ulus can also be considered aé a swelling
result of progressive softening and strain- potential. The layer has an initial compres-
ing of the clay over the years after the cut sive stress, o_, and is bonded to a rigid

was made. base, as is shown in Fig. 1. Initially a is

i . i taken as zero.
Before a cut is made into such soil, there

exist large, horizontal, compressive stress-
es, which are released at the surface of

the slope by the digging of the cut. Conse-
quently, the clay tends to swell; it may then
lose strength and yield plastically. If

the plastic yielding causes further loss of
strength, further plastic flow may occur un-
til the collapse of the slope. There is a
complicated interaction between the stresses
caused by the weight of material in the
slope, the stresses released by excavation,
the swelling of the soil, the initially
available strength of the soil (peak shear
strength), the strain-softening of the soil,
and the final strength of the soil (residual
shear strength.)

In addition to laboratory studies of the
peak and residual strengths, swelling poten-
tial, and other material properties, theore-
tical analyses are needed to understand how
these various factors interact. The geome-
try of the problem is clearly two or three
dimensional, but much insight can be gained
by studying a simpler model to see the ef-
fect of the various factors.

Fig. 1 Basic Model

If o, is removed, the layer will tend to

BASIC MODEL swell to the right. How far it will move
depends on the nature of the bond between the

The one dimensional model consists of a sin- layer and the base. Using the convention

gle layer of thickness, h, of elastic mater- illustrated in Fig. 1 and calling displace-
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ments u, and locations x, one can develop
the equilibrium of an infinitesimal element,
which leads to the basic equation:

dzu (1)
Eh j = T
dax

where 1 is the shear stress in the bond

SOLUTIONS FOR VARIOUS STRESS-STRAIN
RELATIONS

There are many possible relations between
the shear stress carried by the bond, T,

and the relative displacement between the
layer and the rigid base, u. One of the
simplest occurs if there is no relative dis-
placement until a critical shear stress, c,
is reached, after which there is no further
resistance to motion along the bond. Such
a rigid-plastic bonding material gives equa-
tions that are easily solved to give dis-
placements along the failure surface:

2
R - 2 9 o~ h 2
U= e x4 g0x+ g — (2)

and the extent of the plastic failure sur-
face:

_ g.h
Xer = 72 (3)

The negative sign arises because the surface
must propagate to the left in the -x direc-
tion.

For linearly elastic relation between Tt and
u in which there is never any yielding, the
basic equation is again easily solved to
give:

1/2
u = %? (%?)1/ZexP Eg%) x] (4)

A combination of the two previous stress-
strain relations gives a linearly elastic -
perfectly plastic material, illustrated in
Fig. 2. The two previous solutions are mod-
ified to insure compatibility and equilibri-
um at the section where the bond changes
from plastic to elastic.

Figure 3 shows a linearly elastic - strain
softening material which has a peak shear
strength, C_, and a residual strength, C
The solutloﬁ for this case is virtually
identical to the solution for the perfectly
plastic material except that the ratio be-
tween peak and residual strength is unity
for the perfectly plastic material.

INCLINED SLOPES AND FRICTIONAL MATERIALS

The basic model can be modified to repre-
sent an inclined layer by taking o not equal
to zero. The weight of material in the
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Fig. 3 Strain Softening Soil

layer now enters the calculations, for, if
it has a unit weight of vy there will be a
vertical force on each &x of the bonding mat-
erial equal to Yh&x. This will give a com-
ponent of stress Yh cosa, normal to the
slope and a component, Yh sin a , parallel
to the slope. If the available shear
strength, C or C , is then reduced by the
amount necegsary td hold the slope in place
before ¢ _ was removed, namely, 1h sin a, a
new set of strengths, ' and C are found.
These strengths can be gsed in all the equa-
tions found above because the rest of the
problem is identical to that for the flat
layer.
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It is now possible that Cr' may go to zero

if C_ is equal to +h sin a. This corresponds
to a critical h or critical vertical depth

Z= h/cos a, for which a failure surface, once
started, would propagate to infinity. Such a
case cannot occur for a horizontal layer.

A frictional material can also be considered
simply by replacing C_ and C_ by their equi-
valent frictional sheBr streﬁgths in terms

of cohesion, Cp or Cr’ and friction, ¢_ or ¢r.

The new strengths are here called S_ and S
to distinguish them from the cohesiPe com-
ponents. For inclined slopes the strengths
are again reduced by yvh sin a to become S'
and S'_. The solution includes all previogs
solutidns.

It is possible that a failure surface may not
start at all if the strength is large enough
or other conditions are met. By examining
the solution for the elastic material and
considering when the stresses will exceed S_,
a criterion of first yield can be found.

In order to study the effects of varying the
parameters it is convenient to restate the
equations in dimensionless form. The follow-
ing four dimensionless quantities were chosen
as the basic ones.

% - the ratio of in situ horizontal
s' stress to peak shear strength

P available
5}2 - the ratio of peak to residual
S'r available shear strength
E - the ratio of moduli in the soil
kh layer and in the bond with base
fb - the ratio of in situ horizontal
E stress to swelling modulus

The use of these parameters allows the solu-
tions to be summarized as follows:

First yield occurs if:

o [E}/? (5)
57 2 |kR
p -
The extent of the failure surface is:
a 1/2 1
X < |l "o E S
®er= |35 - t R | . (6)

S’ 1/2 o
u_ E 9o p kh o
R = EH'EF'GO exp (E ) 59
(7)
z - S exp (%?)1/2 %
r r
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and the plastic displacements are:

u_1 ' i;E %o & (x)z
h ™ 2 §’; o E h h’'cr
o (8)
Jo X X E 90
tE [(E) ® cn] T B0

If no yield ever occurs, the elastic dis-
placements are:

%

E

E 1/2 1/2)i
h

(R (9)

"_1. = ex (E‘.)
h PIE

EXPRESSION IN TERMS OF CONVENTIONAL SOIL MECH
ANICS PARAMETERS

The horizontal in situ stress can also be
expressed as k_+yZ where k_ is the coefficient
of lateral earth pressure at rest, y is the
unit weight of the soil, and Zz is the dis-~ -
tance from the surface. The total force ovei
a unit thickness of a face would be 1/2 koYh
so 0, can be replaced by 1/2 koYh-

One could analyze the stability of a slope,
such as those considered here, by the conven-
tional means of taking the ratio of the re-
sisting shear forces to the driving forces
caused by the weight of the soil.

The factor of safety for peak strength would
be:

- cp + yh cosa tan¢p

vYh sina (10)

FS
P

and that for residual strength would be:

- cr + yh cosa tanér

Yh sina (1)

FsS

The factor of safety against the first yield
can be found from equation (5), which defines
the conditions necessary to initiate the
failure surface. Substitution of the conven-
tional soil mechanics parameters gives the
following equation for the factor of safety
against first yield, FSy:

1/2
(FS
p

E

2 sina
(———) (EE)

Ko

FS, = - 1)

b4 (12)

Substitution of these parameters into equa-
tion (6} for the extent of the failure sur-
face, and some algebraic manipulations leads
to
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x 2 sina 1
(R cr K, =[1='sr = 1] [Fsy - 1] (13)

which expresses the extent of the failure
surface in terms of the angle of the slope,
Kn’ and the factor of safety. This enables
the analysis to be summarized in a dimension-
less plot, Fig. 4.

In Fig. 4 the ordinate is the factor of safe-
ty against first yield. If the latter is
greater than one, no failure begins. If the
residual factor of safety and the factor of
safety against yield are both less than one,
total failure occurs. 1In the region where
yielding can occur but where ultimate fail-
ure cannot, lines are plotted for constant
values of

% 2 sina

h"CR Ko

Figure 4 can be used by calculating FS_ and
Fsp, finding the dimensionless parameter

) 2 sing
h'CR Ko
and then computing (%)cr fram known values

of a and k_. Examples are shown in the F.S.r

next section.

Of the parameters used so far the shear con-
stant k is the hardest to define rationally
and to measure., If one has experimental evi-
dence of the relative displacement at peak
strength, u_, the parameter k can be rede~
firrd as theYratio of peak available shear to
relative displacement at peak shear. This
leads to a new equation for FSY

Eu_ sina (FS_ -1
FS = Y “p 2 (14)
Y Y Kh

o

EXAMPLE PROBLEM

As an example of the use of the chart of Figq.
4, a problem was chosen with dimensions and
material properties comparable to those for
a real case. The following properties were
not changed throughout the calculations:

b3
1]

2

= §°

100 pcf
= 21.6°

= 1300 psf

o

< R
]

T T

0O e 0O o
)
]

r = 900 psf

The values of ¢ and C were chosen from the
data on Cucaracha shale reported by Hirsch-
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Fig. 4 Dimensionless Results
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feld, et. al. (1965).
the values of E, h, and u_ and the resulting
factors of safety FS_, FsY and FS_. The
lengths of the failuPe sufface ar in the
last column. At heights of 100 feet such
slopes have failed in the field.

Table I summarizes

It can be seen that changes of material con-
stants within a reasonable range do not af-
fect the length of propagation severely.
However, even for slopes with hig" FS_ and
FS_ values, there is likely to be extBnsive
propagation of the failure surface. If the
layer is thinner, the extent of the failure
surface decreases, and eventually there is
no first yield.

CONCLUSIONS

The one dimensional model indicates that
factors other than those considered in the
conventional stability analysis of slopes
may have a dominant effect on whether fail-
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pendent on the conventional parameters of ¢,
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The analysis results in a simple chart that
can be used at least qualitatively to eval-
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TABLE I
Failure Surface
Problem E H U FS FS FS Dimension-
No. b P ' Y less fe.
1 105psf 100 0.01|6.00) 2.94|0.0208 0.505 568
ft. ft.
2 107 100 0.01|6.00}) 2.94] 0.208 0.4 458
3 107 100 0.04]6.00| 2.94| 0.416 0.3 344
4 107 75 0.04]|6.50 | 3.28| 0.585 0.18 152
5 10 50 0.04]7.50] 3.96| 0.953 0.016 9.1
6 107 40 0.04]8.25| 4.48]| 1.26 S -
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