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A Fundamental Stress-Strain Pattern in Granular Materials
Sheared with Small or No Volume Change

Relation contrainte-déformation fondamentale de matériaux granulaires durant cisaillement a volume

constant

T. K. CHAPLIN, M.A., PH.D., A.M.I.C.E., M.ASCE., Senior Lecturer, Graduate School in Foundation Engineering, University

of Birmingham, Birmingham 15, Great Britain

SUMMARY

During constant-volume shearing tests on cohesionless granu-
lar materials, after particle reorientation, suppressed dilatancy
usually causes stresses to increase parabolically with strain until
near the C.V.R. locus. The volumetric moduli of sands appear to
vary exponentially with porosity; their critical pressures also
do, but far more rapidly until crushing begins.

Unconfined compression tests on siltstone, sandstone, saturated
silty clay (undrained), stabilized marl, and hard coal have given
partly parabolic stress-strain curves. Their granular structures
may be hard particles in contact, or intact lumps between micro-
fissures which close at higher pressures.

Natural or artificial viscous cement in voids often makes
granular material appear “elastic” at lower stresses in normal
laboratory tests; extremely slow straining reveals the effect of
granular structure. Repeated slow loading of stabilized soil,
simulating traffic action, makes elasticity much more parabolic.

SOMMAIRE

Au cours d'essais de cisaillement A volume constant effectués
sur des matériaux granulaires non cohésifs, le fait de supprimer
la dilatabilit¢ produit une courbe contrainte-déformation de
forme parabolique. Les modules volumétriques des sables et les
pressions critiques semblent changer exponentiellement avec la
porosité jusqu'au commencement du broyage.

Des essais sans contrainte latérale effectués sur des échantil-
lons de grés fin, de gres, d’argile limoneuse saturée, de marne
stabilisée et de charbon dur ont donné des courbes contrainte-
déformation partiellement paraboliques. Ces matériaux peuvent
étre constitués de grains trés résistants ou encore d'aggloméra-
tion de grains séparés par des microfissures qui se referment a
haute pression.

Sous des contraintes moins fortes, la cimentation visqueuse
fait souvent paraitre élastiques les matériaux granulaire lors des
essais normaux de laboratoire; une déformation extrémement
lente révele les effets de la structure granulaire. Le chargement
répété d’'un sol stabilisé, en simulant I'action de la circulation,
rend I'élasticité beaucoup plus parabolique.

INTERACTION OF DILATANCY AND COMPRESSIBILITY

Though concave-upward stress-strain curves (in which
the slope steadily increases during much of the test) were
reported many years ago, possible causes for the generally
parabolic shape of the concave section do not appear to
have been discussed. Fig. 1 shows some constant-volume
tests on a silt and two sands by other investigators. The
initial consolidation pressure, of 5 1b/sq.in. (0.35 kg/sq.cm.)
or over, caused the rapid initial rise.

FIG. 1. Parabolic stress-strain curves in undrained
triaxial lests on cohesionless soils.

Dilatancy, discovered by Osborne Reynolds (1885),
means the tendency of a mass of particles to expand when
sheared. This occurs below the critical stress, here defined
as the mean stress giving a particular critical void ratio
(Roscoe, et al., 1958) during continued shearing. In tri-
axial compression tests, changes of mean pressure also
cause volume changes; the over-all change is the sum
of both effects, which cancel out in a constant-volume test.

Though a clay can contract easily without shear strains,
a granular material needs shear strains to undergo large
volume changes. At least for high relative porosities (i.e.,
when dense), granular materials generally dilate much more
powerfully than inactive clays. Work by Frederick (1961,
1962) in the author’s laboratory showed that dilatancy
is far more sensitive to changes of relative porosity in
highly rounded particles than in less rounded ones. These
problems have also been discussed by Kolbuszewski and
Frederick (1963).

The resistance of a granular material, at the same strain,
varies rapidly with porosity. Fig. 2 shows results of tests
on two sands (Chaplin, 1961a, 1961b) with curves from
K, and isotropic tests by Fraser (1957) on Brasted sand.
The volumetric modulus varies exponentially with porosity,
so far as can be seen, and the slopes are remarkably
similar. The K, curve for Brasted sand lies above the
isotropic curve because dilatancy in the K, test has more
effect than the freedom of grains to rotate; the curves tend
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FIG. 2. Variation of parabolic compressibility
modulus Q with porosity in three sands.

to converge at higher porosities because dilatancy tends to
zero as the maximum porosity is approached. The forma-
tion of new contacts under increasing load, discussed pre-
viously (Chaplin, 1963), presumably had little effect in this
sand.

In both K, and isotropic tests, deformation at grain
contacts involves large indentations at higher stresses, with
rolling in the K, test. Rolling and sliding are very localized
in the isotropic test, and comparing the tests, o affects the
volume changes far more than o;.

Real granular materials behave very differently from per-
fect spheres in regular packings, for which the load per
contact only varies between 0.44 and 1.0 D2, where D is
the diameter and o the average isotropic stress (Chaplin
1961a, 1961b). In random packings at a low relative poro-
sity (loose state), few contacts are suitably oriented to
resist the principal stresses. If a grain turns, it is likely to
lose nearly as many contacts as it gains. At a high relative
porosity, many more contacts are near the best directions,
and grain rotation is far more likely to make new contacts
than break old ones.

One may deduce how stresses should increase with shear
(or axial) strain in a constant-volume test (ignoring mem-
brane penetration) by making three assumptions.

Assumption 1: A granular material tries to expand in
proportion to the increase of shear strain, apart from
crushing. Fig. 3 suggests how the constant of proportionality
may vary in granular materials of different particle shape,
except near the C.V.R. locus.

Assumption 2: The volumetric strain in a compressibility
test at a low stress ratio varies linearly with the square root
of pressure (Chaplin, 1961a, 1961b).

Assumption 3: The pressure increase needed to suppress
a potential volume increase obeys the same power law
(say 0.5 index) at both low and high stress ratios.

RELATIVE POROSITY n,

FIG. 3. Influence of relative
porosity on the tendency to
dilate.

194

We conclude that the square root of any of the stresses
oy, oy 03, (0, — 03), (o + o5+ 03)/3, etc,, should in-
crease linearly with strain. Fig. 4 gives some examples for
cohesionless granular soils. A large isotropic consolidation
pressure sets up particle contacts differing markedly from
the preferentially oriented ones set up after K, consolida-
tion. Fig. 4 also emphasizes how much shear strain is
needed for non-spherical particles to develop new contacls
to suit a changing stress pattern, unlike the implicit assump-
tion by Rowe (1962, 1963) that none is needed.

When granular particles are placed at successively lower
porosities before shearing, at some porosity the stresses at
failure will cause crushing. This limits the strength attainable
in undrained and drained tests, giving a fairly sharp discon-
tinuity in the C.V.R. locus. Crushing excepted, the critical
pressure seems likely to have an exponential form (Figs. 5a
and 5b) for any soil with either a very small clay fraction or
enough clay to keep the granular particles “floating”
separately.

STRESS, LB/IN® (SQUARE ROOT SCALE)
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FIG. 4. Stress-strain curves for undrained compression tests
on cohesionless soils.

It is very difficult to get reasonably uniform porosity in a
small sample and measure it accurately, but the sand results
(Fig. 5a) fit an exponential patiern very well. Though one
sand did not crush even at the highest pressures, the other
crushed slightly, and the silt apparently crushed at all pres-
sures except the lowest. Presumably the silt had weak grains,
for example, shell fragments, rather than very angular or
flaky grains (they would probably have given much higher
porosities). At low pressures it behaved like the two sands,
because crushing did not occur.

Tests on spherical steel balls and glass beads, Fig. 5b,
show that highly spherical particles can “lock™ solidly if
sheared without volume change below a narrow range of
porosity, within which critical pressures vary extraordinarily
rapidly with change of porosity. Indeed one would expect a
given grading of spherical particles with a nearly infinite
elastic modulus to have the same average critical porosity at



FIG. 5. Variation of strength in limiting state with
porosity in (a) cohesionless soils (b) clays and
spherical particles.

all pressures, and that the critical porosity would be indepen-
dent of size.

The clays in Fig. 5b have critical pressures varying far
more slowly with porosity than any granular material. The
Weald clay (activity 0.6) and the more active London clay
(activity 1.0) differ partly because of grading, but more
likely because of unequal amounts of “soft ice” around
particles which decrease the effective porosity. In clay soils
at low pressures the effective friction is that of the “soft ice,”
but at higher pressures the amount of clay fraction makes a
great difference. If there is a small clay fraction, at higher
pressures the granular particles come into contact and form
a separate structure. Their friction, which is probably higher
than that of the “soft ice,” increasingly controls that of the
whole material as the porosity decreases.

The slopes in Fig. 5b for the two clays are close to that
of the variation of volumetric stiffness for Fraser’s isotropic
compressibility tests on sand (Fig. 2). It seems reasonable to
attribute much of the well-known exponential pattern of
variation of clay properties with void ratio to the geometric
properties of random packings, for which we can take the
sand as a model.

STRESS-STRAIN CURVES OF COHESIVE GRANULAR MATERIALS

The curves in Fig. 6a show how strongly a granular
structure can affect unconfined compression behaviour. The
silty clay was tested at various time intervals after remould-
ing. The first test was affected by changes taking place during
the test. but the others show identical behaviour typical of a
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FIG. 6. Stress-strain curves of cohesive and cemented granular
materials.

granular material, here held at constant volume by the pore
water. The large stress after a small strain is due to the
suction present, which grows slightly and causes “sensitivity.”

The energy for rebound, as in the siltstone test shown in
Fig. 6b, comes from the energy stored at intergranular con-
tacts. Fig. 6¢c shows a sandstone tested slowly enough for
the cementing to add but little stiffness in shear, though pre-
venting much expansion. Fig. 7 suggests a general pattern of
behaviour in cemented granular materials at different strain
rates. Fig. 6d shows that concrete under slow loading can
behave as a typical granular material; there is a serious lack
of tests at low strain rates on concrete of modern gradings.

An exceptionally well-matured 3 per cent lime-clayey
gravel road base, Fig. 6e, gave a remarkably parabolic stress-
strain curve. Though the cementing was sufficient to prevent
much dilation during most of the shearing, its own shear
stiffness was low enough not to mask the granular behaviour
at low stresses.

STRAIN

FiG. 7. Influence of testing

rate on form of stress-

strain curve for a cemented
granular material.
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Microfissured materials are represented by a granite (Fig.
6f) and a hard coal (Fig. 6g). The rebound of the coal
suggests that at low porosities the expansion of the aggrega-
tions between microfissures will almost exactly equal the
compression over the same stress range, whether the micro-
fissures be open (parabolic elasticity) or closed (linear
elasticity).

g, LB/N® ( SQUARE ROOT SCALE)

FIG. 8. Stress-strain curves for remoulded and stabilized
Keuper marl.

Fig. 8 shows that even unstabilized remoulded Keuper
marl, curve a, can behave as a granular material at low
stresses. Repeated loading of stabilized Keuper marl, curve
¢, confirms the impression from Fig. 6¢ that the soil-cement,
lean concrete, etc. used in roads may have a much smaller
elastic modulus at small strains, after repeated loading by
traffic, than normal laboratory tests apparently show.

In cohesive granular materials with cementing, long-term
tests will show low strengths because the tensile strength of
cement varies so greatly with time of loading. Even though
the cement may contain enough hard crystals to itself be
dilatant (e.g. Portland cement), during some intermediate
time range it will yield enough in shear not to add much
stiffness to the granular structure, but without failing in
tension.

Carey (1953) gave a numerical definition of rheidity as
the time within which 0.999 of the deformation of a particu-
lar material is plastic. The rheidity of a cementitious deposit
with a granular structure would be affected by the eventual
tensile breakdown of cementing material following its vis-
cous flow, in addition to creep and solution effects at the
intergranular contacts between mineral grains.

DEGRADATION BY CONTINUED SHEARING

Continued shearing changes the shape of particles in a
granular material. Débris accumulates, and some or much
of it lies loosely in the voids without taking part in resisting
stress. The effective porosity increases, and the effective
relative porosity may increase markedly (at least below
crushing pressures) through sharp corners becoming
rounded, so affecting the “limiting porosities” (unobtain-
able) of those particles currently in contact. Crushing can
affect both undrained and drained stress-strain curves at
higher stresses.

The new surface produced during shearing is roughly
proportional in a given material to the energy absorbed.
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Shear strains under low pressures, as in a beach, if repeated
often enough can causc great degradation, and one might
expect traffic stresses to have a similar though far smaller
effect. If the same sand is redeposited in a shear box after
each test, after a few tests at the same porosity and moderate
normal pressure (1 to 2 tons/sq.ft.) it can become markedly
weaker, despite complete redeposition between tests.

CONCLUSION

Concave-upward stress-strain curves have been shown to
be associated with the interaction of dilatancy and com-
pressibility in materials with a structure of reasonably hard
mineral grains. Cemented granular materials and microfis-
sured solids in unconfined compression, also sands and silts
in constant-volume tests, have given parabolic curves over
part of the stress range. No clays other than very silty or
sandy clays appear to do so.
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