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Some Stress-Strain Relationships for Soils

Quelques Relations entre contraintes et déformations des sols

J. BRINCH HANSEN, DR. TECHN., Professor at the Technical University of Denmark, Director of the Danish Geotechnical

Institute, Copenhagen, Denmark

SUMMARY

By means of a simple assumption concerning the distribution
of the deformation states of particle contacts in a potential
rupture surface before loading, an equation is developed for the
relationship between shear stresses and strains at first loading.
Some empirical relationships of a still simpler form are also
indicated. One of them is combined with an empirical formula
for isotropic compression, giving rise to a more general formula,
which is also applicable to oedometer and triaxial tests.

SOMMAIRE

Au moyen d’une supposition simple concernant la répartition
des états de déformation aux contacts des grains sur un plan de
rupture potentiel avant chargement, on a élaboré une équation
établissant la relation contrainte-déformation au premier charge-
ment. Quelques relations empiriques plus simples sont aussi
indiquées. Une d’entre elles est combinée a une formule
empirique pour la compression isotrope, résultant en une formule
plus générale qui est aussi applicable aux essais a I'oedométre
et aux essais triaxiaux.

ASSUMPTIONS

Consider a sample of a soil, consisting of separate par-
ticles, which has been deposited in any natural or artificial
way. In a potential rupture surface any two particles in con-
tact with each other will probably already have slid back
and forth several times during deposition.

In an arbitrary kind of shear test we now apply an
increasing sliding or shear deformation 8 and measure the
corresponding average shear stress 7. This gives the dotted
curve in Fig. I, corresponding to “first loading.” After a
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FIG. 1. Stress-strain diagram with hysteresis loop.

deformation §; the average shear stress has reached it ulti-
mate value 7;, corresponding to failure. If we increase the
deformation beyond 8;, r would remain constant (=r.). If
we now reverse the deformations, we get the full curve
through point 3 which, theoretically, reaches the opposite
failure stress —r, after a deformation §;. This curve corre-
sponds to “full unloading.” If, finally, we reverse the defor-
mations a second time, we get the full curve through point
4, corresponding to “full reloading.” By partial unloading
or reloading we may arrive at any point inside the hysteresis
loop formed by the two full curves mentioned above.

From the above it follows that, after deposition but before
first loading in the shear test, any existing particle contact in
the potential rupture surface corresponds to a point inside
or on the hysteresis loop, or on one of its two straight-
lined extensions (coresponding to =ry).

An unknown fraction « of the particle contacts corre-
sponds to points in or on the hysteresis loop, and the
remaining fraction 1 — « to points on its extensions (half
on each). The fraction « is distributed statistically in some
unknown way, but for simplicity we shall here assume an
even distribution, not over the area of the loop, but over the
two boundaries (half on each).

By first loading in the shear test ultimate failure will not
be reached until all particle contacts in the failure surface
have been brought to failure. This means, as already stated
above, that the deformation §; necessary for failure in the
first loading must be identical with the deformation neces-
sary for complete reversal in unloading or reloading.

GENERAL FORMULA FOR SHEAR DEFORMATIONS

Experience shows that the unloading and reloading curves
can usually be expressed in the simple form:

v/t = 2(8/8)" (N

where n must be determined experimentally. By means of
this, and the above assumptions, we shall now deduce an
equation for the curve corresponding to first loading
(dotted in Fig. 1). For each particle contact we can find an
expression for the additional shear force r developed by an
additional shear deformation 3. For a particle contact I,
which already was at failure (in the same direction) before
the test, we find of course:

n =0 2

For a particle contact 2, which was at failure, but in the
opposite direction equation (1) gives the following force:

T2 = 20,(8/80)" (6 < 6. ®3)
For a particle contact 3 on an unloading curve we get:

T3 = 27(8/8,)" (6 < 8¢ — &) Ha)

and
(4b)
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T3 = 27’1[(51 - 450)/5r]" (5 26— 50)-



By integration we can find the average value for the
unloading curve:
1 B8 <6>n 1 i (51 o 50>"
== 2rl =) déo + — 2r \——
=5 T3, ot O¢ Ja—s Tt oy déo
= 21'_‘[ o i:] =
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Finally, for a particle contact 4 on a reloading curve we

gel:
= 27.[<6—i—6“) 2 (-5‘-’> ] (6 <8—5) (6a)
L ¢
and
[19%
T = 27;[1—(5)] (6> 8 — &). (Gb)
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The average value for the reloading curve is:
() ()]
=— 2 2T (=
fesa ) B 5 5, d5y
AARO)
e 2 I —\7 dé
+ Siduos 8¢ ¥
o
= 551—n+1 @

According to our assumptions, the total shear force will
be:

10 —a)(ri+ 1) + salra + 74)
= —' (1 — )88, + af" (3 — 8) + 8311}.  (8)
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This gives the final formula:

@ Db-@] o

The constants n and a, which both must lie between
0 and 1, should be determined experimentally in any given
case. It should be noted that equation (9) is valid only
for first loading. For unloading and reloading, equation (1)
applies.

In most practical cases the best results seem to be obtained
witha =1, i.e.:

rr= (3/80) + (/80" — (8/8:)" (10)
This equation will be used in the following.
SPECIAL CASES
With n = 1, %, and % respectively we find:
/= (8/8)[2 — (8/80)], (10a)
T/ro=V/(8/8)[1 — (/80 + (5/8:),  (10b)

and

/e =V /801 — (3/80] + (8/8:).  (10c)
Corresponding curves are drawn in Figs. 2, 3, and 4
respectively (in the latter the full curve). Unloading and
reloading curves are also shown. The different curves seem
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FIG. 4. Curve corresponding to equations
(10c), (12¢), and (13a).

to apply to different kinds of soils, for example Fig. 2
often applies to soft clay, Fig. 3 to loose sand, and Fig. 4 to
dense sand. Moreover, the curves seem to apply, not only
to direct shear tests, but to almost any test, in which shear
stresses play a dominant role, for example triaxial tests, plate
loading tests, pile loading tests.



A DEFINITION OF FAILURE
If the  — & curve has a maximum, it is natural to define
failure as corresponding to this maximum. However, in
many cases no such maximum occurs, and failure is then
defined more or less arbitrarily. A suitable definition can be
found, when it is observed (from the full curve in Fig. 4)
that 8 = 0.58; corresponds to 7 = 0.97,. This gives the
definition already proposed by the writer (Brinch Hansen,
1963b) : Failure corresponds to the load, at which the defor-
mation is twice the deformation at 90 per cent of the load.
It is also worth noticing that § = 0.18; corresponds to
7 = 0.57;. This leads to the simple rule: When the factor of
safety is about 2, the deformation at working load will be
approximately 10 per cent of the deformation at failure.

SIMPLER FORMULAS

Although the developed formulas are not very compli-
cated, they have, with the exception of (10a), the drawback
that 8/8; cannot be expressed explicitly in +/r;. It may,
therefore, be preferable to employ still simpler formulas,
usually of the “hyperbolic” type. The simplest formula of
this type was proposed by Kondner (1963). His formula
may be written as:

/T = (a + 1)8/(ad + &) (11a)
8/8y = v/[(c + )7, — ar]. (11b)

For small stresses this implies a linear relationship. How-
ever, in reality this relationship is more often parabolic,
which fact led the writer (Brinch Hansen, 1963a) to pro-
pose a formula of the following type:

/10 =/[(0 + 1)8/ (b5 + 3,)] (12a)
8/80=7"/[(b+ 1)r; — b7 1 (12b)

In order to fulfil the above-mentioned 90 per cent criterion,
we have to put b = 3, with which we obtain:

/T =48/ (36 + 8)] (12¢)
8/8; = /(4" — 37). (12d)

The corresponding curve is shown with a dotted line on
Fig. 4. In a majority of cases the writer has found this
relation to be the best approximation to experimental results.

Another useful formula, proposed by the writer (Brinch
Hansen, 1963b) is:

s-n ooy ]
e &6+6 8 L T ’

The special feature of this formula, as opposed to (11) and
(12), is that it gives a maximum at failure. The correspond-
ing curve is shown with a dash-dotted line on Fig. 4. It
should be noticed that (12¢,d) and (13) give the same
results for small stresses.

(13a-b)

ISOTROPIC COMPRESSION
When we consider first loading only, the results of an
isotropic compression test can usually be expressed approxi-
mately by the equation:

&=+ e+ e =34(c,/M)™ (14)

where M is a constant “deformation modulus” for the soil
in question, whereas 4 and m may depend upon the water
content w or the void ratio e.

ANISOTROPIC COMPRESSION
The mean normal stress o, may still be assumed to pro-
duce a volume decrease as expressed by (14). The deviator
stress oy — oy = o, — o has two effects. First, it produces
shear deformations ¢, — ¢; = ¢, — €, and second it pro-
duces a volume dilatation, which is usually proportional
to the shear deformation. In an oedometer test (e, = ¢3 = 0)
the stress ratio oy/0; = K, is found to be approximately
independent of ¢, (or @,,). This means that the parenthesis
in (14) must also be a factor for the shear deformation and
dilatation.
If we define a “stress angle™ v by the equation:

siny = (6, — 03)/(o1 + 03 + 2¢c cot ¢) (13)

we have, according to Coulomb’s failure criterion, v, = ¢.
We can then combine (12b), (14), and (15) as follows:

1

€1 — €3 = 3[3(0’,,,/,‘[) (k—ﬂmzfl (1())
Further we get:
& = €1+ 2¢; = 34 (0,/M)" — B(er — &5).  (I7)
It is then easy to derive:
AT pp—_ L
@ = (on/M) [A + Eom ey — 1) U9

and
o w|, _ BA4B) ]
@ == (/M) l:A (ksin ¢/sinv)* — 11" (19

The dimensionless quantities m, 8, k, 4 and B, as well as
the deformation modulus M must, of course, be determined
experimentally. They are, with the exception of M, func-
tions of w or e.

Similar relationships may be developed using, instead of
(12b), one of the other equations for 8.

THE OEDOMETER TEST
The condition e, = ¢; = O gives the following formula for
the stress angle v, in the oedometer test:

k sin
Sin ¥y = o _ksng

B '
1/2(1+B)+1

The coefficient K, = o3/0, can then be found from (15)
which, in the case of ¢ = 0, gives:

K, = (1 — sin vy)/(1 4+ sin vy)

(20)

(21a)
and
sin vy = (1 — Kg)/(1 + Ky). (21b)

By means of (20) it is possible to write equations (18)-
(19) as follows:

_ (ksin ¢/sinvg)® — 1] )
@ = Alon/M) I:l o (ksin ¢/sinv)’ — 1 (18a)

and

o i |y (ksin ¢/sinvg)’ — 1} ,
@ =« =A(on/M) [1 (k sin ¢/sinv)* — 1 -(19a)
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THE TRIAXIAL TEST

If only the deformations during the compression test
are wanted, we must deduct the (isotropic) deformations
due to the consolidation pressure o:

A B2 - 8) ]
<ﬂ[> [A - (ksin ¢/sinz)” — 1

(5 e
ca=(2) 4 M_:I
@=e= (M) I:A (ksin ¢/sinv)® — 1

—(;—2>M~A. (23)

Equations (18a)—(19a) can, of course, be changed simi-
larly.

€1
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CONCLUSION
Comparatively simple equations have been developed,
which should be suitable for describing, in a purely empiri-
cal way, the actual relationships between stresses and
strains in soils, corresponding to the usual laboratory tests.

REFERENCES
HaNseN, J. BRINCH (1963a). Diskussionsbeitrag zum Aufsatz
Zweck-Dietrich: Modellversuche mit steifen Dalben in
bindigen Boden bei plotzlicher Belastung. Mitteilungsblatt
der Bundesanstalt fiir Wasserbau (Karlsruhe), Mai, 1963,

(1963b). Discussion on R. L. Kondner; Hyperbolic stress-
strain response: cohesive soils. Proc. dmerican Society of
Civil Engineers, July, p. 241,

KonDpNER, R. L. (1963). Hyperbolic stress-strain response:
cohesive soils. Proc. dmerican Society of Civil Engineers,
Feb.



