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Stochastic Processes in the Grain Skeleton of Soils

Phénomeénes stocastiques dans la structure granulaire des sols

R. J. MARSAL, Research Engineer, Instituto de Ingenieria, Universidad Nacional Auténoma de México, Mexico

SUMMARY

It is recognized in soil mechanics that the grain structure of
a soil does not react instantaneously to changes in stresses. How-
ever, little attention has been given to this fact in theoretical
developments. Time lags are attributed generally to interference
between the fluid and solid phases. This paper is concerned with
transient phenomena in the grain skeleton during one-dimen-
sional compression. Movements of particles are considered the
consequence of erratic impulses transferred to each grain by
the neighbouring ones, coupled with constant action. Further-
more, particles are assumed to move in a viscous medium. The
process is analysed by stochastic methods, and it is concluded
that the process is governed by the diffusion equation (Fokker-
Planck). A solution is offered for specified boundary conditions,
and results discussed. The proposed stochastic theory may find
application in the study of transient phenomena, like consolida-
lion of soils.

SOMMAIRE

Il est reconnu dans la mécanique des sols que la structure
granulaire d’un sol ne réagit pas instantanément aux variations
de contraintes. Ces retards sont généralement attribués a I'inter-
férence entre les phases fluide et solide. Toulefois, peu d'altention
a é1é, jusqu'a maintenant, accordée a ce fait dans les travaux
théoriques. Cette communication traite des phénoménes tran-
sitoires dans une structure granulaire, sous I'action d'une com-
pression unidirectionnelle. Les mouvements de particules sont
considérés comme une conséquence des impulsions erratiques
transmises a chaque grain par les voisins, plus une action con-
stante. En outre, on suppose que les particules se meuvent en
milieu visqueux. Le phénoméne est analysé par un calcul de
probabilités et il en est conclu que ce phénoméne est régi par
I’équation de diffusion (Fokker-Planck). Une solution est offerte
pour les conditions limites spécifiées et les résultats en sont
discutés. Cette théorie stocastique proposée peut trouver son
application dans I'élude des phénomeénes transitoires tels que la
consolidation des sols.

DEFINITIONS AND GENERAL RELATIONSHIPS

LET US CALL V. the total volume of a soil element which,
due to variations in the state of stress, undergoes a volu-
metric change AV. In the direction of reference axes x, y,
and z, deformations of the volume element are A, A\, and
\,, respectively. Corresponding strains will be defined as
follows:

o= aV/Vy (1)
e = N/, & = N/, €, = /1 (2)
Iy, I, and I, being the initial dimensions of the soil element.

Except for terms of higher order, such strains are related by
the expression,

&= &+ e+ ¢, 3)

Assuming that volumetric changes AV are equal to variations
in the volume of voids, AV, the correlation between strains
and void ratios, e, is: :

e, = —Ae/(1 + e). (4)

As known, Ae is obtained by dividing AV, by the total
volume of grains V.. The ratio V,/V.. will be called concen-
tration of the solid matter, g. This soil characteristic in terms
of void ratio is equal to

qg=1/(1L +e). (5)
From (5), changes in concentration are:
Ag = —Ae/(1 + e)? = /(1 + €) (6)

On the other hand, the grain concentration, n,, is defined
as the number of particles per unit of volume. Assuming

that the average volume of individual grains v, is known;
then,

)

g = nw,

(For determination of v, see Marsal, 1963).

IDEALIZED SOIL STRUCTURE

Soils are two-phase or three-phase systems. A grain
skeleton encloses voids which are filled with a fluid. This
fluid may be composed of gases and a liquid. In further con-
siderations of this paper, the actions of neither gas nor liquid
phases will be taken into account.  The above-mentioned
skeleton constitutes a discrete body composed of grains
having a great variety of shapes and sizes. Also the mineral
composition of these particles may change within wide
ranges. Due to this fundamental character of soils, one is
forced to work with statistical values of their physical pro-
perties. It is also required that the number of particles per
unit volume be large enough that asymptotic formulae
derived from a stochastic analysis become acceptable.

Among the mechanical soil properties of statistical nature,
the void ratio, concentration of solids, and coefficient of
compressibility are the essential ones in the calculations that
follow. All of them depend on the shape and size of grains
as well as on the particle arrangement in the skeleton. Sub-
stantial breakage of grains may occur in some cases and
affect these soil properties.

From the stochastic analysis discussed herein, two other
properties of the solid phase will evolve: the coefficient of
diffusion and the drift. Both are statistical parameters which
take into account grain displacements induced in the soil
skeleton by changes in stresses.
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In this paper, the solid phase is considered isotropic. The
analysis will be confined to the one-dimensional case.

STATIC EQUILIBRIUM OF A SOIL

Let P;; be the intergranular forces acting on a particle §
and assume that this grain is in equilibrium (Fig. 1A). Also
consider that x, y, z is the Cartesian frame of reference.
According to the principles of statics, the sum of all com-
ponents and moments of forces P; must be zero. Now
detach a cubic element from a granular mass which is in
equilibrium. Intergranular forces cancel out inside the
element, but along its outer faces there are sets of vectors
P, as shown in Fig. 1B, Magnitudes and directions of P;
vary from contact to contact in a manner that would be
extremely difficult to predict.

a2

A B

A, intergranular forces acling on a particle; B, cubic
element and contact forces.

FIG. 1.

Let us call §,, T,,, T,. the components of forces P; acting
on the element face normal to axis x (see Fig. 2A). Accord-
ingly, S,, Tys T,. and S., T, T,, are the components
associated to faces (x, z) and (x, y), respectively. The
intergranular stresses o,, 7o, 7., etc. will be defined as the
arithmetic sums of force components per unit of total area.
Therefore,

=

s

N, N,
3, = 2_:1 Sesy, Toy = ; TSy 7 >—4 Tsen, etc. (8)

where N, is the average number of contacts per unit of
total area. For determination of N, and related matters see
Marsal (1963).

Although direct information on contact forces P; is not
available, one can imagine that the magnitude of their com-
ponents varies so irregularly, that they may be considered
as random events. In addition, if such events are indepen-
dent from each other, the effective stresses o and + are
governed by distribution functions that converge to the
normal type (central limit theorem, Crameér, 1946). Con-
sequently, it is necessary to deal with average values of o
and r as well as their respective variance in order to make
statistical computations. It would be difficult to predict
accurately the error which is involved when stresses are
measured only by means of average values instead of using
the distribution functions furnished by the theory of proba-
bilities. However, for the problem dealt with in this paper,
it will be assumed that the said error is not significant.

TRANSIENT PHENOMENA

Consider that a soil layer, infinite in extent and 2H thick,
which after being in equilibrium under a vertical stress &,
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is subjected to a load increment Ag. Let us concentrate
our attention on a single particle of the soil mass away from
the boundaries. Prior to the application of A, contact forces
P; transmitted by adjacent grains to this particle satisfy static
conditions of equilibrium. In order to investigate what
happens after applying 45 to the soil layer, we will make
the following hypotheses: (a) movements of the particle
are produced by unbalanced contact forces acting on it;
(b) surrounding grains transfer contact forces and also
operate as a homogeneous medium restricting the particle
displacement, its rate being constant. Furthermore, actions
on the particle are split in two parts: a constant inter-
granular force, and erratic contact forces, the resultant vector
changing in magnitude and direction with time (Fig. 2B).

FIG. 2. A, idealized cubic element and average components of
intergranular forces. B, components of intergranular forces in
the z direction,

The above-described model is similar to that adopted for
the Brownian movement. Instead of the molecular activity
of the liquid we have erratic forces transferred by the
neighbouring grains. In both cases, the particle moves
inside a Newtonian body. The axis normal to the surface
of the layer is z. Since we are dealing with a one-dimen-
sional case, components of the particle displacements in the
x and y directions cancel out and are of no consequence in
further analysis of the process. Due to the action of inter-
granular forces combined with the restriction to displace-
ment in the granular mass, the particle walks back and
forth by steps and is drifted downward along the z-axis.
At this stage we make use of the stochastic method of
analysis originally devised by Markov (1912), and further
extended by Kolmogorov (1936), Feller (1957), Chan-
drasekhar (1943), and others. This method requires that
the magnitude and direction of each displacement of the
particle be independent of the preceding ones and that the
probability of each step along the z line adjusts itself to a
distribution function selected a priori. In our case, due to
the character of the contact forces being exerted by neigh-
bouring grains on the particle, the independence of events
seems most likely. Equal probabilities for the forward and
backward direction will be adopted in respect to the distri-
bution law.

FREE-MOVING PARTICLES
According to Chandrasekhar (1943), the probability that
a particle finds itself between z and z 4 Az at time 1, is
given by,

Wiz, t) = 1 exp[—2°/4D1); )

|
2(wDt)



where,

D = %nl (10)

n being the number of displacements per unit time and [
the mean square length of the steps performed by the grain.
D will be called the coefficient of diffusion of the solid
phase. It is of interest to investigate the amount of particle
motion restricted by the presence of a reflecting barrier or
absorbing walls (Chandrasekhar, 1943). In the first case,
the probability that the grain is in the interval (z, z + 2z)
at time ¢, results in

1
Wizt 2,) = 3(aDb)"

{exp(—2"/4Dt)

+ exp[— (28, — 2)’/4Dt]}  (11)
z; denoting the location of the refiecting barrier. From this
expression, it is found that

(oW /0z),—,, = 0. (12)

When a perfect absorbing wall exists at z., the probability
is given by the following equation:

W, t;20) = 3D [exp(—2"/4D1)
— expl— (22, — 2)*/4Dt]}  (13)
Hence,
Wz, t; 73) = 0. (14)

It is easy to demonstrate that expression (9) satisfies the
well-known equation of diffusion

D(82W /3z2) = aW/at

and that (12) and (14) correspond to boundary conditions.
Fig. 3A shows the probability curves (Eq 9) for several
times.

(15)

PARTICLE DRIFT AT CONSTANT SPEED
If the particle is not only acted upon by erratic impulses,
but also by forces which drift it at a constant speed c, the
probability function (Feller, 1957) results

1 3 .

Wiz, t) = 2(""—Dl); exp[— (z — 2¢t)"/4D1].  (16)

This is the fundamental solution of the Fokker-Plank
equation

D(8*W/322) — 2c(dW/dz) = aW/at. a7

FIG. 3. A, probability curves as time elapses (f, < f, < 1,),
free-moving particle. B, probability curves as time elapses,
particle drift at constant speed.

Curves representing the probability function (16) are drawn
in Fig. 3B. The solution of Eq (17), satisfying initial and
boundary conditions of our problem, is the answer being
sought.

PROBABILITIES VERSUS GRAIN CONCENTRATIONS
The probability of finding a single particle in the interval
(z, 2 + Az) at time ¢ has been introduced. However, one
can imagine that function W also represents the fraction of
a large number of particles located between z and z + Az
at time {, the initial condition for all the grains being that
z = 0 at t = 0. This interpretation of W permits the calcu-
lation of the physical meaning of this function. In fact,
W(z, t,) AZ gives the number of particles that are located
between z and z + Az at time ¢, (see Fig. 3B). When At has
elapsed, +, = 1 + At. Then, the number of particles in the
interval (z, z + Az) is equal to W(z, t,)AZ. The difference,
W(z, t,) AZ — W(z, 1;) AZ shown in Fig. 3B by the shaded
area between curves for {; and 1,, is the change in grain
concentration An, during the interval Ar. Therefore, function
W identifies with n,, and, according to Eq (7), it is pro-
portional to q.

SOLUTION FOR THE ONE-DIMENSIONAL CASE
1t follows that from the previous paragraph, the dif-
ferential equations of the process involving a large number
of particles is,

(18)

For an infinite layer 2H thick, assumed to be isotropic and
homogeneous, boundary conditions are:

q(z,0) = q1;9(0, 1) = ¢q; q2H, 1) = ¢, (19)

where ¢, and ¢, are the initial and final concentrations of
the solid phase.

Eq (16) is a solution of the diffusion process with drift,
but it does not satisfy conditions (19). In order to integrate
Eq (18) let us homogenize the boundary conditions using

0(z, 1) = q(z, 1) — q.. (20)

Then, transform variable Q by means of Eq (21), so that
the differential equation becomes the known diffusion law
(Eq 15).

0(z, 1) = U(g, t)explcz/D — ¢%/D]. (21)
Finally, the general solution is assumed to be
Ue D) = 2 andu(2) a1, (22)

In which g, are arbitrary constants. Each particular solution
is of the form

Uu(z, 1) = (a,/c,) (A4, sin K,z +
B, cos K,z) exp (—K=, Dr) (23)
Applying boundary conditions to Eq (23), its coefficients
can be evaluated, and we obtain finally
. = nw/2[1 = (=1)"exp(—2Hc/D)]
Uz, t) = — s) - 5
@0 = (01— q2) ;. (He/D) 4+ (nw/2)*

2w’ DI\ . uwz

X exp(—Tﬁr/ sin SH

(24



Taking into account previous transformations, the general
solution of (18) becomes:

2 nr/2[1—(—1)" exp(—2Hc/D)]
26 =gt @m0 B T G Byt 2)”

o (-5 Dl gty oo

We are also interested in average values of concentrations
g for the layer 2H thick, as time elapses. Through integra-
tion of (25), the following equation is found:

o dn [1 - (—1)"Ch°H”]
() = g+ (@1 — g 2, y 2
(G

x.exp|_ ("'D >:| (26)

o
In the above expression Dt/H? and c®/D are dimension-

less. Let us call them, diffusion and drift time factors,
respectively.
T, = Dt/H?, T, = c®t/D 27)
Hence
JT,/JT, = Hce/D =1 (28)

J being independent of time.

TIME-COMPRESSION CURVES

Further application of the results so far obtained neces-
sitates converting the concentration changes into strains. If
we call Ag = ¢g» — ¢, the total variation of g for a constant
increment of intergranular pressure Ac, the change in con-
centration at time ¢ is equal to:

Ag, () =ag—[g2 — @] =q() —q1  (29)
Substituting (26), affected by expressions (27) and (28) in
the above equation, we have:

S n’n’[l — (=1)"Ch2J]
= - V‘
A= A1 = oy

cof (2 Ay

Considering relationship (6) and that — Ae = a,A7 (g, being
the coefficient of compressibility), changes in concentration
are expressed as follows:

Ag=maAc/(l +e) =¢/(l +e) (31)

where m, is the bulk modulus of compressibility and e, the
volumetric strain. For the one-dimensional case, ¢, = ¢,
then,

(30)

= 4x’n’[1 — (—1)"Ch2J]
'y 2 47+ n'c]?

X exp[ —(%"2 + J’)’l‘lj} . (32)

The product mAc is the final strain ¢, Therefore, the strain
ratio A is equal to

€ = va&{l

A = e,/mAT. (33)
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Time Factor, T,
FIG. 4. Time-strain relationships for the grain skeleton.

For different values of J, function (33) was evaluated and
results plotted in Fig. 4. When J decreases, Eq (33) tends
to a limiting curve given by expression,

s 7.)
&= "LJ e EXPK 1 1)
As J increases, curves A — T; move toward the ordinate
axis, the first portion being almost a straight line for J* > 5.
Eq (33) is not a convenient function for further applications
in soil mechanics. The series converges rather quickly when
J is smaller than unity. However, convergence becomes slow
for large values of parameter J, particularly when T tends
to zero. For J* = 20 and T, = 0 one hundred terms were
required to find out that the series in Eq (32) has a limiting
value of unity. This fact led to an investigation of approxi-
mate expressions for function (33). It seems that the follow-
ing ones would be simple and adequate in most cases.

_ _ AR N E A
A=1-— [-LJ+1r"]“ PI: <4+J>11:|v

for 71 (35)

A=1— (aT, + 1) exp (—bTy), for J > 1. (36)
Function (35) accounts for the first term of the series only.
In Eq (36), a and b have to be selected so that the best

fitting to (33) is obtained. For instance, a = 6 and b = 11
are suitable values for J2 = 10.

(34)

CLOSING REMARKS

Based on the stochastic interpretation of phenomena
occurring in the grain structure of a soil, strains of the
skeleton alone are not instantaneous. As noted, interference
between the solid and fluid phases were not considered in
these theoretical developments. For the unidimensional case,
the process in the granular skeleton is governed by the
thickness of the soil layer and two parameters, the coefficient
of diffusion and the drift. The later one seems to depend



on physical characteristics of the grains, the void ratio, and
the increment of effective pressure applied to the soil. The
coefficient of diffusion is a property of the grain structure
related to the number of random displacements per unit time
and the mean square length of steps performed by the
particles during the compression of the layer (refer to Eq
10). It is worth noting that the process is greatly influenced
by the thickness of the layer (see Fig. 4). This result is of
importance for applications, since compressibility properties
of soils are obtained by testing samples whose thickness is
very small as compared to that of the stratum in the
prototype.

The theory herein described was developed in order to
explain the so-called secondary compression of soils. This
can be done combining the diffusion Iaw for grains in the
skeleton with Terzaghi’s theory of consolidation, as pro-
posed by the writer (Marsal, 1961).
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