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Calculation of Bed for Foundation with Ring Footing

Calcul des semelles de forme annulaire

K. E. EGOROV, Doctor of Science, Scientific Research Institute of Foundations and Underground Structures, Moscow,

US.S.R.

SUMMARY

Formulae have been obtained for calculating the settlement
and reactive pressures of an absolutely rigid ring foundation
subjected to an axial-symmetrical load, when the foundation bed
ol the model is a linear deforming half-space medium (theory of
elasticity). Simultaneously, formulae have been obtained for the
design moments required for determining the stresses in ring
foundations having a high rigidity. For one case in which the
ratio of the ring radii, n, is 0.6, tables of the design moments are
set forth.

SOMMAIRE

Ce mémoire presente des formules pour le calcul du tasse-
ment et des pressions dans le sol sous une fondation annulaire
absolument rigide soumise & des charges axiales et symétriques.
Ces formules ont été développées, suivant la théorie de I’élas-
ticité, en utilisant un modéle dans un milieu unidimensionnel.
Le mémoire donne aussi des formules permettant le calcul des
contraintes dans une semelle rigide de forme annulaire. Dans le
cas ol le rapport des rayons de l'anneau, n, est 0.6, l'auteur
présente en tableaux les moments théoriques.

IT IS DIFFICULT to design ring foundations because of the
absence of formulae for determining the deformation of the
bed and the stresses in the foundations themselves. The
required formulae for these calculations can be obtained
from the following twin integral equations (Egorov, and
Nichiporovich, 1961):
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where w, and o are the deflection and the reactive pressures
directly under the foundation footing; J,(ra) is Bessel’s
function of the first order and zero sequence; and E and v
are average values of the modulus of deformation and
Poisson’s ratio of the soil.

The twin integral equations have been obtained on the
assumption that there is no friction under the foundation.
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FIG. 1. Axial-symmetrical load-
ing of ring foundation.

Over the whole length of the boundary plane z = 0, there-
fore, the tangential stresses are equal to zero (Fig. 1). Out-
side a settlement plate with 0 << r < R;and R, < r <
the stress o, also equals zero. Inside a settlement plate with
R, < r < R, the deflection w, is constant.

From these boundary conditions the unknown factor
D(a) in Eq 1 is determined. In the case of a ring plate
with an axial-symmetrical external load, it is sufficient to
represent D (a) as follows:

D@ = | FE©)Toed)ds, )
where

£ = /(" + b° — 2ub cos ¢)
a—b=R,a4+ b= R,

Here R, and R, are respectively the internal and the external
radii of the ring foundation.

Taking the value ¢ as the variable of integration, Eq 2
can be represented as

i 2F(£) Jo(at)tdt
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Upon substituting the second of the equations (1) with
Eq 3 according to Hankel’s theorem (Sneddon, 1951), the
boundary conditions for the stress o, under a ring plate are
immediately met. According to this theorem outside a ring
plate with 0 << r < R; and R, < r < o0, we have o9 = 0,
while within this plate with R; < r < R, the reactive pres-
sures oy = p(r) are determined from the simple formula
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For approximate solution of the problem under con-

sideration it will be sufficient to represent the auxiliary
function F(r) as follows:

F(r) = CvV/ (" — m'R.)). )
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The value of C is determined from the condition of equality
of the external and internal forces, the formula being

P= j:[op (r)rdrds. ©)

Substituting in Eq 6 the value of p(r) from Eq 4, and
taking into account Eq 5, we obtain

P -

€= v = mIRE, @

where E, is a complete elliptical integral of the second order
having the form
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The values of m depending upon the ratio of the ring
radii, n, are determined from the condition that w, is con-
stant, which the first of the equations (1) must satisfy
within the interval R, < r < R,. The complicated mathe-
matical transformations used to calculate the values of m
depending upon n are not set forth herein, however, they
can be found in works by the author (Egorov, 1963).
Calculations show that within the interval 0 < n << 0.9
it can be taken that m = 0.8n. To determine the settlement
of a ring foundation, the first Eq 1 can be represented as
follows:

wo = [P(1 — v*)/ERs]w(n). (8)

The deflection factor w(n) is given in Table I. With n = 0
we obtain the settlement of a circular (solid) foundation.

TABLE I. VALULES OF DEFLECTION FACTOR, w(ﬂ) FOR ASSUMED VALUES

OF #
n =20 0.2 0.4 0.6 0.8 0.9 0.95
w(n) = 0.5 0.50 0.51 0.52 0.57 0.60 0.65

For this instance «(0) = 0.5. Table I shows that the settle-
ments of circular and ring foundations are of the same
order for an identical general force P, other conditions
being equal, if the ratio of the ring radii is within the
interval of 0 to 0.6. The same is true when a pair of forces
is acting with a moment M = Pe, where e is the eccen-
tricity. The solution of this problem is obtained from the
twin integral equations (1), where Jy(ra) should be re-
placed with (x/r)J;(ra) (Egorov and Nichiporovich, 1961).

Without considering this problem here, it can be recom-
mended that the formula obtained previously for a circle
be used when determining the inclination of a ring founda-
tion with 0 << n < 0.6.

f =301 —»)M/4ER,. ©)

From Eqs 4-7 the formula for the reactive pressures
under an absolutely rigid ring {foundation in the case of an
axial-symmetrical load can be derived. This formula will be

P r’ — m’Ry
2eRe/ (1 — )EU‘/ - ROH&R:E =10
From this formula two partial solutions can be obtained,

one for a circle and one for a strip. In the case of a circle
R; =0 (n=0) and m = 0, and Eq 10 will be reduced to

p(r) =
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p(r) = P/[27R:v/Ry” — 77). (11)

In the case of a strip, the origin of co-ordinates should

be transferred to the middle of the ring by substituting

r—R,=>b+xand Ry — r = b — x, where 2b = R, — R,

remains constant with the values of r, R;, and R, having
infinity as their limit. Hence,

r= (Ri/Ry) —1; (r/Ry) —1; (r/R:) — 1;

(P/27I'R2)—)P1; Eg = 7l'/2

By making the corresponding substitutions in Eq 10, with
account taken of the previous ratios, we obtain the well-
known formula for calculating the reactive pressures under
a continuous foundation

px) = P/[x /(6" — «")], (12)
where P; is the linear load and 26 is the width of the
foundation.
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FIG. 2. Reactive pressures for one half of a ring
foundation.

Fig. 2 shows the changes in the reactive pressures in the
right-hand half of a ring foundation. The curves correspond
to the values of R, = 0, 3, 6, 9 and R, = 10, which give
n =0 (circle), n = 0.3, n = 0.6 and n = 0.9. They have
been plotted from Eq 10 reduced to the following:

1 - n2)\/(t72 - mz)P
mHEn/[(0° — n) (1 — p9)]
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The reactive pressures calculated from Eqs 12 and 13 for
n = 0.9 coincide. Therefore for n = 0.9 ring foundations
can be calculated by means of the formulae obtained for
continuous strip footings.
As is well known, the stresses in a foundation slab having
an axial-symmetrical form are determined from the follow-
ing equation:

P(”) = 2\/<1
(13)

\—r—-; + ?_a—r* T AT ——'> =q(r) — p(r). (14)
The slab, having a high cylindrical rigidity (D), takes up
the reactive pressures coinciding with the distribution of the
stresses under an absolutely rigid foundation (D = o). For
this reason the formulae obtained below for the design
moments with D = oo can be used to determine the stresses
appearing in slabs with a high rigidity. The distributions of
the external axial-symmetrical vertical load g(r) and the



reactive pressures p(r) along the footing of a ring founda-
tion can be represented in the form of the integrals

a(r) = f " 0(a) Jo(ra)ada;

- (15)
p(r) = J; P(a)Jo(ra)ada.

In case of the action of an external linear load P; (in
tons/m) distributed on the surface of a ring foundation
slab along a circumference with a radius of R,, we have

Q@)

P
2 Jo(aRo) ’
™

P = 27R,P.. (16)

For a uniformly distributed vertical external load, g
(in tons/sq.m.) over the whole area of a ring foundation

with the radii R, < R,, we get
_ P J1(aR>) e fl(a)Rl]
Q(a) - _"_(1 _ n2)|: aRg n aRl , (17)
R
P = R 2 ]_ — 2 ; = _1 .
mqRy (1 —n); = s

The factor being integrated in the second Eq 15 coincides
with the factor D(a) in Eqs 1. Therefore from Eqs 2, 5,
and 7 we have

P
4Ry (1 — m*)E,

Pla) =

x fo"\/@? — R Tolat)ds.  (18)

The common integral of the differential equation (14) is
expressed by the sum of two solutions:

w(r) = wo(r) + wi(r), (19)

where wq(r) is the common solution of homogeneous Eq 14
and w,(r) is the partial solution satisfying the righthand
part of Eq 14. They have the form:

wo=Co+ Cilnr + Co> + Cy’Inr (20)
w = lme—@M"‘—)[Jo(m) — l]da. (21)
D 0 (64

The integral constants in Eq 20 are determined from the
given border conditions for the ring foundation slab. For
example, in the case of a freely lying slab the lateral forces
are equal to zero along the internal and external perimeters
of the ring, which result in C3 = 0. The constant C, does
not have any influence on the value of the designed
moments. To facilitate calculations let us assume that C, =
—C;InR,.

The radial and tangential moments are determined with
the aid of Eqs 19 to 21 and are expressed as follows:

d"w vaw}
_D[672+1’ r
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[(1 + v) Jolar)

—(1 - u)fg(ar)] da

+ D[(l S —20+ »)a] L (@22)
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+(1 - V)fz(ar)]da

. D[(l — 0S4 20+ y)cz} . (23)

where » is Poisson’s ratio for the material of the foundation.
(For reinforced concrete » = 1/6.)

As the ring foundation slab freely rests on the bed which
is being compressed, it should be assumed that M, = 0
when » = R; and r = R,. These conditions are sufficient
for determining the constants C; and C, contained in Egs 22
and 23. For them the following expressions have been
obtained.

1. In case of a linear load P, in tons/m, distributed along
a circumference with a radius of Ry(R; << Ry < R»):

.- PR_f
787D — #) (1 —»)
X [(14+»)2lna — A4)
—(@1=»0-a=B)]; | @1
Cy = L
167D(1 — n™)(1 4+ »)
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2. In case of a load ¢ in tons/sq.m., uniformly distributed
over the area of the entire ring foundation slab,

B

co= PR/
1= 784D — n)(1 — »)
2’

a2t a)

1 —#°

+ (1 =» ) —B);
ro(25)

Coe — P
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2
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In Eq 24 F, and E, are complete elliptical integrals of
the first and second order. After substituting the constants
C, and C, with their values from Eqs 24 and 25 in Eqs 22
and 23 it remains necessary to calculate the integrals in the
expression

K = [0 =P

X [(A 4 v)Jolar) — A — ») Jao(ar)]da. (26)

Substituting Q(a) and P(a) in Eq 26 with their values
from Egs 16 and 18, we obtain, after integrating, two values
for K depending upon the existing inequalities r <{ R, and
r 2 R,. Hence the radial moment M, for the case of a
linear load along the circumference with a radius of R,
is determined by means of the following values of K:

K——[(l V)< In—>+(1——v)T:|

(r < Ro)

l

P = 7R’ (1 — n¥)q; n =

@7)

K=£{(1+v)5+ (1 —y)[r—

1 HeH 2 .
S-% %J V(1 — & sin’f)

X In[l — (1 — #%) sin’0]d§ — E In p] ;

((1 — k) (Fo— F)

+ 2k — 1)(Es — E))

1 9 9 9
+ v —m) VIA = )" — 1) (" — m®)]
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F= J‘ v (1 — E’sin 0)
1(r—B)
E=‘£ v/ (1 — k" sin"0)d8;
2 1 — 7’L2
k 1 —m”’
B/2 = arc cos 4/1 — 0
- 1—n""
_r
P = RZ‘

The values of the complete elliptical integrals F, and E, are
obtained from the values of F and E for 8 = 0.
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For the case of a load g (in tons/sq.m.) equally dis-
tributed over the whole ring slab we get

P f

K=*"_l(l+y)

8w (1
X [2lnp+1—p +2(1 —n)S)

+ (1 —v) [#(1 — 2%)

S iy
—2—|-2(1 n)l]

} (28)

The definite integrals contained in the expressions for
S and T are calculated according to tabulated values of
elliptical integrals, except for the integrals containing expres-
sions with natural logarithms. The latter have been calcu-
lated in accordance with Simpson’s method.

For determining the tangential moment M, in Eqs 27 and
28 in the second member of the expressions K before the
factor (1 — ») the sign minus should be taken instead of
plus. This rule follows from the basic Eqs 22 and 23, where
expressions are given for M, and M,.

As an example, the dimensionless values of the moments
M, and M, have been calculated for n = 0.6 from the
formulae:

M, = P\R.M,, M, = PiR.M,;
M, = qR,M,, M, = qR,"M,,

where P; is the linear external load along circumference
with radius R, g is the load uniformly distributed over the
entire ring foundation slab, and R, is the external radius
of slab.

TABLE I1. VALUES or 7, WITH 7 = 0.6

For a linear load P, For a
distributed
p a = 0.6 a =07 a =0.8 a =0.9 a =1 load ¢
0.6 0 0 0 0 0 0
0.7 —=0.0077 40.0547 40.0303 —0.0048 —0.0474 +0.0056
0.8 —0.0103 +40.0246 40.0610 40.0144 —0.0330 +0.0078
0.9 —0.0118 =+0.0014 +0.0043 -+0.0413 —0.0419 +0.0035
1.0 0 0 0 0 0 0
TABLE II1. VALUES OF i, WITH 7 = (.6
For a linear load P Fora
distributed
o a = 0.6 a =07 a =038 a =09 a =1 load ¢
0.6 40.5159 +0.3460 +40.1226 —0.1551 —0.4880 +0.0452
0.7 +0.4292 +0.3030 +-0.1096 —0.1307 —0.4191 +40.0377
0.8 40.3675 =+0.2622 +0.1096 —0.1054 —0.3962 +0.0329
0.9 +40.3166  40.2241 +0.0905 —0.0873 —0.3472 +0.0295
1.0 +0.2810 +0.1978 +40.0767 —0.0817 —0.3204 +0.0271

Tables II and III contain respectively the values of A7,
and M, depending upon p = r/R, and « = R,/R,. In
addition, at the end of these tables, values are given for
M, and M, for the case of a distributed load g. These tables
illustrate that when calculating ring foundation slabs the
maximum moments arise in the direction of a tangent. From
Table III, however, it follows that when an external linear
load acts along circumference R, the value of M, is near
to zero with » = 0.6 and « — 0.85.

The maximum value of the radial moment M, with n =



0.6 almost coincides with the calculated value in case of a
plane problem with a width of the rigid strip R, — R, = 25,
when the linear force P, acts on the middle of the ring strip.
In a book by Gorbunov-Posadov (1957) tables of moments
are given for calculating continuous foundations, where
M = 0.318P;b. According to Table II the value of M,
given for p = 0.8 and o« = 0.8 corresponds to this instance.
Hence we obtain M, = 2/(1 — n)0.061P,b = 0.305P,b.

Under the action of a load uniformly distributed over the
whole ring foundation slab we obtain for n = 0.6 at the
middle of the ring strip M, = 0.078gb%. At the same time
in the formulation of the plane problem for the middle of
the strip we have M = 0.136¢gb>. It is therefore better to
calculate ring foundation slabs for n < 0.6 by means of the
formulae given above, than in the formulation of the plane
problem.

In this paper the formulae of the design moments have
been obtained by assuming that under the foundations the
bed is deformed to an unlimited depth. Actually the design
moments are influenced only by the deformation of the soil
located within the compressed stratum of the bed. For this
reason the values of the design moments obtained should be
reduced by 20 per cent.

It should be noted that from the expressions of M, and
M, given above when n = 0 a particular case of a round
slab with a high rigidity is obtained, which was considered
in detail in a booklet by Gorbunov-Posadov (1941).

In the Soviet Union the beds of structures are calculated
according to the deformations. For example, depending upon
the height (H) of the stack, smoke stacks should be designed
with a view to the following tolerated settlements (§) and
inclinations (f) of the foundations: for H << 100 m, § =
20 — 30 cm, f = 0.004; for 100 < H < 200 m, S = 15 cm,
f = 0.003; for 200 < H < 300 m, S = 10 cm, f = 0.002.
In many instances smoke stacks can be erected on ring
foundations.

At present, in Moscow, a television tower over 500 m
high is being erected on a ring foundation. Thus the
question of the ring foundation under consideration is not
only of theoretical, but also of practical interest.
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