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Calculations for the Stability of a Sand Bed by a Solution
Combining the Theories of Elasticity and Plasticity

Calculs de la stabilité des massifs de sable utilisant la théorie de I’élasticité et la théorie de la plasticité des sols

M. I. GORBUNOV-POSSADOQV, PROFESSOR, DOCTOR OF TECHNICAL SCIENCES, Scientific Research Institute of Founda-
tions and Underground Siructures of the USSR State Building Committee, Moscow, USSR.

SUMMARY

The calculations of the stability of a sand bed under a rigid
rough footing resting on the surface have been carried out with
a view to the formation under the plate of a compacted core.
The latter consists of an elastic part adjoining the footing and a
lower plastic part. The stresses and strain in the elastic part of
the core are determined by means of the theory of elasticity. The
lower boundary of the elastic part is established assuming that
all three components of the stresses at both sides of the boundary
are equal, and that the lines of sliding are a smooth continuation
of the trajectories of the particles in the elastic part of the core.
The stresses in the plastic part of the compacted core and in all
the remaining displaced soil are determined in accordance with
the theory of critically stressed soil. The vertical and tangential
reactions of the soil to the footing at the moment when the
compacted core is formed have been established. The results
agree with experimental data and indicate an increase in the
value of the critical load.

SOMMAIRE

Le calcul de stabilité d'un massif de sable supportant une
fondation rugueuse et rigide est effectué en tenant compte de la
formation d’'un noyau compact sous la semelle. Le noyau est
constituté d’une zone élastique contigu€ a la semelle et d'une
zone inférieure plastique. Les contraintes et les déformations
dans la zone élastique du noyau sont déterminées d’aprés la
théorie de I'élasticité. La frontiére inférieure de la partie élastique
est établie en partant de la condition que les trois composantes
des contraintes des deux cOtés de la frontiere sont égales et que
les lignes de glissement sont la suite continue des trajectoires
des particules de la partie élastique du noyau. Les contraintes
dans la zone plastique du noyau compacté et dans tout le reste
du terrain déplacé sont déterminées selon la théorie de I'équilibre
limite. On a établi les réactions normales et tangentielles du
terrain agissant sur la semelle lors de la formation du noyau
compacté. Les résultats sont conformes aux données expéri-
mentales et permettent d’augmenter la valeur de la charge critique
dans les calculs.

IN A PREVIOUS REPORT (Gorbunov-Possadov, 1961), the
prospects opening up in the field of calculating beds and
foundations were considered in connection with the solution
of the mixed problem of the theory of elasticity and the
theory of plasticity of soils. These considerations have served
as the basis of the solution of a particular two-dimensional
problem regarding the stability of a dense sand bed under
a rigid, rough, centrally loaded shallow foundation. The aim
of this solution is to eliminate the gap between experimental
results and theoretical data on the process of loss of stability
and the magnitude of the critical load.

When formulating the problem, the following experi-
mental data were used (Berezantsev, 1952; Malishev, 1953;
Kananyan, 1954): (1) Registration with a fixed camera of
the movements of sand grains under a load close to the
critical one shows that the trajectories are smooth lines,
with no sharp changes in direction (Fig. 1). (2) After
rigid connection of the camera to the footing a fixed core
of sand grains that do not move in respect to the footing
is formed under it (Fig. 2a). (3) After performing experi-
ments with painted layers of sand after removal of a load
approaching the critical one a core will also be discovered
in the bed; it will have greater dimensions and breaks in
the displacements along its boundary with the remaining
soil (Fig. 2b). (4) The reactive pressures under the same
loads are distributed along the foot of the loading plate in
a saddle-shaped stress pattern.

Besides these data, which were later confirmed by Zaharescu
(1961) and Biarez, et al. (1961), the assumption was made
that the trajectories of the sand grains in the plastic zones

~ ~ ~ o
eI
s~ gy gt
o o B //II || \ \\
RS ===
\;:::_:/:/;////,///!';Hl”'1\\ VY
\\\_~_—__,/////,////ll,”| ‘l\\\\\\\\
----- =27 LG LA VL
P SR GO R L A IV
—:’_//;///5/////////!1“\\\\\\\\
r‘//////§/// //////l,I \\\\\\\\
R AR I B IR T S
- / | |\ \
e S g el A gk T A A
r A S NN e 8 B / ”|\ \\ \
’,///_/,//,////I/,I|\\\\\\

FIG. 1. Diagram showing results of recording sand grain move-
ments with fixed camera.

coincide with the lines of sliding. (It should be noted in
passing that the conclusion of Shield (1953), stating that
the direction of the movements deviates from the line of
sliding through the angle of internal friction ¢, was not
confirmed by these experiments.) From the experiments it
follows that the trajectories come out to the surface at a
sharp angle close to (#/4 — ¢/2), as follows from the theory
for lines of sliding.

On the basis of these propositions the process of failure
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FIG. 2. Diagram showing results of experimental
determination of compacted core boundaries: A,
by means of camera rigidly secured to footing (the
elastic part of the compacted core is photo-
graphed); B, with the aid of painted layers of sand
(the compacted core as a whole is registered).

of a bed under an increasing load may be represented as
follows (Gorbunov-Possadov, 1954).

1. After a certain initial compression of the bed a small
core is formed directly under the footing (Fig. 2a, OA in
Fig. 3). All the grains of this core move downward together
with the footing. This core is in an elastic state, and the
contact pressure stress pattern is uniform, as for a rigid
body. The elastic movements in the small nucleus can be
disregarded in comparison with the downward movement.

2. Upon an increase in the load under the elastic core,
a large compacted core begins to form (Fig. 2b, OB in
Fig. 3) at the expense of plastic shifts in the sand under the
elastic core. Under a certain load P; formation of the core
will be completed and the core will begin to sink as a unit
moving apart and compacting the soil at the sides. When
this occurs the movements at the edge of the core are inter-
upted (Fig. 2b).

3. Under the critical load of P; > P, the soil at the sides
of the large core becomes sufficiently compacted to pass
into the critically stressed state and heaving takes place. The
boundary of the compacted core remains the rupture line,
but the lines of sliding of the active group (along which
movement of the soil takes place) outside the core remain
smooth continuations of the same lines in the core (Fig. 1).
It is assumed that the form of the compacted core does not
change with an increase of the load from P; to P;. An
increase in the stability safety factor would result if account
were taken of the side load formed along the edges of the
footing due to downward displacement of the compacted
core at the time heaving occurs.

The first part of the theoretical solution consists in finding
the lower boundary of the elastic part of the core. Brief
information on this stage is contained in a previous report
(Gorbunov-Possadov, 1961). The present report sets forth
exhaustive information on the principal points of the mathe-
matical solution, but the intermediate calculations published
in a book by the author (Gorbunov-Possadov, 1962)
are omitted.

The stresses and strain in the elastic part of the core are
determined in accordance with the theory of elasticity. It is
assumed that, along the contact of the footing with the
core, there are no horizontal elastic movements, while the
vertical ones are constant. Within the elastic part of the core
the quantity 4 = (o7 — 03)/(0; + o03) < sin ¢, on the
lower boundary A4 = sin ¢. In the first approximation, it is
assumed that the elastic part of the core reaches the edge
of the footing. All three components of the stresses, at both
sides of the boundary (in the elastic and the plastic zones),
are correspondingly equal. The boundary of the elastic part
is not a line of sliding or an intrinsic curve of the lines of
sliding; it is like a retaining wall with a variable angle of
friction & between the wall and the plastic soil (8§ << ¢). The
angle & is determined from the condition that the lines of
sliding approach the boundary vertically, as they are a
smooth continuation of the trajectories of the forward motion
of the grains in the elastic part of the core. In the upper
corners of the elastic part all the components of the stresses
are equal to zero due to the absence of a side load. In the
lower corner they are also equal to zero, since the core
wedges apart the lower sand, in which there can be no
tensile stresses. The stresses caused by the weight of the
sand in the elastic part of the core are not taken into
account, as they are insignificant in comparison with the
stresses caused by the external load.

On the basis of the theory of plasticity (critically stressed
state) of soil (Sokolovski, 1954) and of the condition of

FIG. 3. Results of theoretical solution of problem.
OA—boundary of elastic part of compacted core, OB—boundary of compacted core as a
whole, OBC—transition zone, OCD—zone calculated according to Karman’s equations,
ODE—Rankine’s zone.
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the vertical direction of the lines of sliding along the
boundary there is established a relationship between the
values of & and the angle of inclination to a horizontal line
« of a tangent at any point of the boundary:

sin ¢-cos(2a — ¢) (1)
1 — sin ¢-sin(2a — ¢)
In accordance with the same condition on the axis of sym-
metry the value of the angle o will be

3 .
ap = —éz + g — 3% arc cos Lsm ¢+ Cos <f — g>:l (2)

Assuming in the first approximation that tan « changes
linearly from tan «, at the apex to a« = 0 at the edge of
footing, we can obtain the corresponding initial equation of
the boundary in the form of two branches of a quadratic
parabola:

tan § =

x = Yarctanao(l — [y])% 3)

A Cartesian system of co-ordinates reduced to half the
thickness @ of the footing has been selected with its origin
at the centre of the plate, the x axis directed downward and
the y axis to the right. At a value of ¢ = 40°, for which the
example given below has been solved, Eq 3 leads to a form
of the elastic part of the nucleus that closely corresponds
to experimental data. However, the given boundary con-
ditions are not yet fulfilled on curve 3.

In order to find the actual boundary we shall introduce
a function of the stresses:

Vi y) = ¢* @ y) + ¥, ) (4)
where ¢*(x,y) is a double exponential polynomial of the
seventh degree with even numbers in respect to y:

VA, ) = @’ + @y’ + ...+ awryt  (5)

The relations deduced from the biharmonic property are
imposed upon the coefficients of this polynomial. Further

i=3 j=2
v (x, y) = Z Ci7i21n 7+ ‘.? 7’:'2 Inv; (6)
i=0 =1
Biharmonic functions of the type ;2 In r; have their poles
at points on the x axis, viz. x5 = 0.75, x; = 0.75, x, = 1,
x3 = 1.25, while of the type r?2 In r, at the points x =
0.595, y = =0.01; r is the reduced distance from points
on the half-plane to the poles. In the first approximation it
is taken that C, = D = 0. It should be understood that it
would have been possible to solve the problem with the aid
of other biharmonic functions having singularities outside
the elastic part of the core. The question of the convergence
of the solution is not considered.
To ensure fulfilment of the conditions imposed along the
upper boundary on the movements:

(0u/3¥)z—0 = 0, (0v/8y)z—0 =0 ()

the components of these values, depending upon functions
of Eq 6, are approximated by the method of least squares
correspondingly with an odd (in respect to y) polynomial
of the fifth degree and an even polynomial of the fourth
degree. The components of functions of Eq 7, depending
upon exponential function of Eq 5, are directly expressed
by polynomials of the same kind. By summing up both
kinds of components and by making them equal to zero on
the basis of Eq 7 the coefficients of the terms of y of all

degrees we obtain six equations. Six more such equations
are obtained from the conditions o, = ¢, = 7, = 0 at
the apex of the elastic nucleus (x = x,, y = 0) and at the
edge of the foundation (x = 0, y = == 1). The remaining
equations are obtained from Eq 1, which is used for several
points on the lower boundary (y = 0, 0.2, 0.4, 0.6, 0.8).
Besides, on the basis of the condition of equilibrium all the
arbitrary constant values being sought are expressed
through the load.

Thus when the lower boundary has been previously selected
all the boundary conditions will be met precisely or approxi-
mately except for the condition 4 = sin ¢ on the lower
boundary. By calculating the actual value of A4 at separate
points of this boundary and by analysing the magnitude
and sign of the difference between A and sin ¢ by trial and
error the boundary is changed to reduce this difference as
much as possible. In this instance all the remaining con-
ditions for each following trial boundary should be com-
plied with in the same way as for the boundary taken for
the first approximation.

The co-ordinates of the elastic core boundary, which in
our opinion gives satisfactory results, are contained in a
previous report (Gorbunov-Possadov, 1961). Instead of
the precise value of 4 = sin 40° = 0.643 the values of 4
at separate points of the boundary change from 0.617 to
0.653. The stress patterns of the contact normal and tan-
gential stresses expressed in parts of P;/a are shown in
Fig. 4.
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FIG. 4. Stress patterns of contact

stresses in parts of the value P,/a:

(a) vertical stresses, (b) tangential

stresses. The dotted line designates

the average value of the vertical
stresses.

The form of the elastic part of the core (OA in Fig. 3)
was found to be very close to that proposed by Lundgren
and Mortensen (1953) for the entire core. The difference
consists in the fact that Lundgren did not suppose that there
exists a plastic part of the compacted core, and therefore
he obtained a lower value of the critical load.

The second part of the solution consists in plotting the
lines of sliding and determining the stresses in the plastic
region of the bed.

In accordance with the solution obtained the lower
boundary of the elastic part of the core touches the base
of the footing at its edge, while the state of the soil here
is close to the critically stressed one. Without altering the
first part of the solution, therefore, it can be accepted that
the boundary of the core begins not at the very edge, but
at a certain distance from it, as shown in experiments.
Hence on a certain small section near the edge, the lines of
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sliding, in accordance with accepted principles, should
approach the base of the footing vertically.

The stresses o = (o + o) /2 near the edge on a section
with a width of 0.2a increase in direct proportion to the
distance from the edge. To determine the small region near
the edge the differential equations of Karman-Sokolovski
can therefore be used:

dy
g

cos 8 — sin ¢ cos(2y + 8) — s-cos” ¢
2s-sin ¢- (cos 2¢ — sin ¢)
ds _ s-sin 2y — sin(2y + 8)
g cos 2¢ — sin ¢
which, as is known, can be used if the following ratio is
observed:

1= , (8)

o = yrs(@) )
The equation of the lines of sliding in this instance will be

]
r = Cexpf cot (Y =+ u)dé
0

In Eqs 8 to 10 r and 6 are polar co-ordinates with their
pole under the edge of the foundation, ¢ is the angle of
inclination between the major principal normal stress o, and
a radius vector passing through the point under consideration
(Fig. 5), y is the unit weight of the soil, p = (#/4 — ¢/2),
and C is an arbitrary constant.

(10)

A
O

% by

s

/
X

FIG. 5. Graphical definition of
symbols used.

Proceeding from the given value of y on the y axis and
the values of ¢ and s on the boundary of Rankin’s zone,
integration is carried out within the finite differences of
Eq 8. The value of s = s, on the y axis is found by trial and
error. Omitting the details of integration, we note that, with
¢ = 40°, the equation of the stresses along the axis y’,
which has the same direction as the y axis, but originates at
the edge of the footing (Fig. 3), will be

o = —396.4yy’a (11)

where a is the half-width of the loaded area.
Simultaneously on the basis of the solution of the problem
for the elastic part of the core on the section near the edge:

o = —2.1325y’P,/a. (12)
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From Eqs 11 and 12 the values of the load P; will be
P, = 185.9ya™. (13)

The network of lines of sliding and the value of the
stresses in the plastic part of the consolidated core are
determined as follows: Let us assume that the core is set
back from the edge over a reduced value equal to 0.05. This
value approaches the results of experiments. A more exact
estimate would be of no importance; if 0.1 or 0.01 is taken
instead of 0.05 an almost identical result is obtained.

Along the whole lower boundary OA of the elastic part
of the compacted core the stresses and the direction (verti-
cal) of the lines of sliding are known. This is sufficient to
plot a network of lines of sliding and determine the stresses
in most of the core. For these purposes Coche’s problem is
solved by employing the approximate methods of Sokolovski
(1954). The solution of this problem, however, does not
give the stresses or the position of the network of the
lines of sliding in the narrow region adjacent to the axis
of symmetry. Along this axis the lines of symmetry should
be vertical (Fig. 1), that is the lines of sliding should
touch this axis, while the axis itself should be the rupture
line. By employing these considerations the problem is also
solved for the remaining region near the axis of symmetry.

The boundary of the compacted core as a whole is shown
in Fig. 3 (line OB).

It remains to find the network of the lines of sliding and
the stresses in the plastic area outside the compacted core.

For this purpose we shall assume, in accordance with
the results set forth above, that within the limits of the
region below the line of sliding of the first (active) family
originating from a point located on the y axis at a distance
of y» = —0.2 from the edge (line i = 2 in Fig. 3) the con-
dition of the soil is determined by solving Karman’s problem.
We assume as previously that the boundary of the core OB
coincides with the line of sliding of the second family j = 0.
This boundary up to its intersection with the line { = 2
coincides with the line of sliding of the second family j = 2,
determined according to Karman and originating from a
point located on the axis y” at a distance of 0.05 from the
edge (Fig. 3). Beginning from this point of intersection the
line of sliding j = —2 diverges from the boundary of the
core j = 0, which is an envelope of the line of sliding of
the second family. In order to plot the line j = —2 the
value of C in Eq 10 should be determined. In accordance
with the solution of Karman’s problem for C = 1 the dis-
tance from the point on the axis y” where the line of sliding
of the second family originates is equal to d = 0.0107.
Assuming that all the linear dimensions have been reduced
to half the width of the footing, the value of C for the line
j = —2 is determined according to the equation C = 0.05/
0.0107 = 4.67.

The solution of the problem for the area lying between
the lines of sliding j = 0 and j = —2 is obtained from the
condition that the line j = O is an intrinsic curve of the
second family, and that the lines of the first family are a
smooth continuation of the same lines inside the core. As
the value of the stresses on the line j = —2 is known before-
hand, the Sokolovski methods can be employed to establish
easily the distribution of the stresses along the boundary of
the compacted core, which will now be different from those
under a load of P;.

All the remaining lines of sliding between the line j = —2
and the boundary of Rankin’s zone (region OCD in Fig. 3)
are plotted according to the solution of Karman’s problem.
The values of C in Eq 10 are established for each of the



lines of sliding of the first family in such a way as to ensure
their being a continuation of the lines of the same family
in the transition region. The lines of the second family are
plotted for any values of C less than 4.67. In Fig. 3 they
are given for C = | and C = 0.01.

Calculation of the critical load as the integral of the verti-
cal components of the normal and tangential stresses taken
along the lower boundary of the compacted core gives the
value of the critical load (at ¢ = 40°): P, = 383.5ya>. This
value of P; is considerably higher than the values obtained
according to other methods of calculation, including methods
which approximately take into account the existence of a
compacted core as a rigid body, the vertical section of which
is usually taken in the form of a triangle: for example,
Terzaghi (1943), employing interpolation for ¢ = 40°,
P; = 260ya®; Caquot and Kérisel (1953) P; = 228ya?;
Berezantsev (1960) P; = 200ya?. With the core in the form
of the curvilinear triangle of Lundgren (1953) P; = 187ya”
(approximately), and from the experiment of Kananyan
(1954), with medium-grain sand and y = 1.7 tons/cu.m.,
Py = 320ya?.
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