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C onsolidation de couches d ’argile basée sur la relation contrainte-déform ation non-linéaire

N. JANBU, T echn ica l  U n ivers i ty  o f  N o r w a y ,  T rondh e im ,  N o r w a y

S U M M A R Y

A differential equation for one-dimensional primary consolida­
tion is derived on the basis of strain, instead of additional stress, 
and the equation is solved for some typical cases.

Applied to the case of no lateral yield one finds that a 10-m- 
thick clay layer carrying a uniformly distributed load consoli­
dates, in the first half of the process, about twice as fast as found 
by the conventional method. This finding appears in principle to 
be in accordance with experimental evidence.

The strain procedure is also modified and applied to concen­
trated loads (strip and square) on deep clay layers, by means of 
simple formulae for estimating the effective drainage path, less 
than the total layer thickness. The effect of non-vertical drainage 
for such cases is not investigated.

The procedure derived is capable of taking the influence of 
the stress history into account, while this important effect is 
altogether neglected in the conventional method.

S O M M A I R E

Une équation différentielle pour la consolidation primaire uni- 
dimensionnelle est dérivée de la déformation au lieu de la 
contrainte additionnelle et l’équation est résolue dans quelques 
cas typiques.

Dans le cas sans déformation latérale, on trouve qu’une couche 
d’argile de 10 mètres d’épaisseur portant une charge uniformé­
ment distribuée se consolide, durant la première moitié du 
processus, environ deux fois plus vite que par la méthode con­
ventionnelle. En principe ce résultat semble correspondre à 
l’expérience.

La méthode de déformation relative est aussi modifiée et 
appliquée à des charges concentrées (oblongues ou carrées) 
placées sur des couches d’argile profondes au moyen de formules 
simples pour calculer la distance du drainage qui est inférieure à 
l’épaisseur totale de la couche. L’effet du drainage non vertical 
dans pareils cas n’a pas été étudié.

La procédure dérivée peut prendre en considération l’influence 
de l’histoire des contraintes, tandis que cet effet important est 
négligé dans la méthode conventionnelle.

t h e  d i f f e r e n t i a l  e q u a t i o n  for one-dimensional consolida­
tion of a thin saturated clay layer expressed in terms of pore 

pressure reads, in general

m v (du/dt)  =  d / d z [ (k / y w) (dll/dz)} (a)

where m v =  constant, implying linear stress-strain. In addi­
tion one has to assume k  =  constant, in order to arrive at the 
conventional equation

d u / d t  =  cv(d2t</dz2). (b )

This differential equation has been solved for cv — constant, 
and initial u either constant or equal to a linear function of 
Z. Corresponding degrees of consolidation as functions of 
the time factor are available.

However, experimental evidence, collected internationally 
over decades, has clearly demonstrated that (for t — co) the 

effective stress-strain relationship for clays is non-linear, 
implying directly that there is generally no proportionality 
between the additional stress diagram and the primary 
consolidation. Hence, the entire basis for the conventional 
method of obtaining the time rate of consolidation is ques­
tionable, except perhaps for very thin layers, such as in an 
oedometer. The most serious objection is probably that the 
conventional method is not capable of taking the effect of 

the stress history into account, an effect which is generally 
found to be of considerable magnitude.

In order to arrive at an improved method it is believed 

essential to base the entire analysis on strain instead of on 
additional pore pressure, and also to use the experimentally 
determined relationships between effective stress and strain 
and between velocity and gradient— both theoretically 
idealized.

D E R I V A T I O N S

For the derivations reference is made to Fig. 1, which 
shows the soil profile, and the vertical stress and strain 
distributions as functions of depth and time. Idealized rela­
tionships between velocity and gradient (Hansbo, 1960) and 
between effective stress and strain, represented by the tangent 

modulus (Janbu, 1963), are included in the figure.
The case considered is one-dimensional ( K 0/ K0’ condition, 

no lateral yield) and drainage takes place in the vertical 
direction. For arbitrary values of z  and t the straight-line 
portion of the velocity, presented diagramatically in Fig. le, 

may be expressed as

v =  k ( i  — to). (1 )

For Equation 1, when v =  0, additional consolidation must 
take place, corresponding to the shaded area in Fig. le. This 
additional settlement will give the appearance of being a 
secondary phenomenon. Herein, the straight-line portion for 

i Si i0 is termed primary consolidation.
An expression for the gradient is obtained from the fol­

lowing relationship, which is presented diagramatically in 

Fig. lb:

q =  a ’ +  h y v . (2 )

Using the fundamental definition of i, one finds

i  =  —d h / d z  =  (1 /Yw) [(dcr'/dz) — ( d q / d z ) \ .

For the purpose of expressing the gradient in terms of 
strain, e, a stress-strain relationship is needed. The definition 

of the tangent modulus M ,  Fig. If, yields

da' = Mde.  (3)
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IMPERVIOUS BASE

Using dimensionless variables

T  =  t ( c v/ d ‘l ),  £ =  z / d  (1 1 )

the differential equation is written (cv =  constant),

d t

d T

d \ d_ d vo

c v a ?
(1 2 )

For the following analysis Equations 6 and 12 are essen­

tial. The cases dealt with will be limited to v0 =  /(£)•

(c) VERTICAL STRAIN (  d  ) R E S I  D U A L  E X C E S S  I L

u r

(e) VELOCITY- GRADIENT

' l = , o

• END OF 
"PRIMARY" 
CONSOLI­
DATION

(f) TANGENT MODULUS

f i g . 1. Notations, definitions, and elementary relationships used 

for derivation of differential equation.

Moreover, it is advantageous to use the following abbrevia­

tion for effective stress variation, at / =  oo,

Yq =  d q / d z  =  d q / d z  =  (q s -  q b) / d ,  (4)

after which the gradient takes the form

i  =  { M / y v ) ( d t / d z )  — y Q/ y w. (5)

Inserting Equation 5 in Equation 1, one obtains the basic 
equation for vertical velocity

v =  cv(0e /d z )  — v 0, (6 )

where the coefficient of consolidation cv and the nominal 
velocity v0 are given by the expressions

cv =  k M / Tw (7)

Vo =  k ( i o +  Yq/Yw). (8 )

The differential equation is now derived from the con­
tinuity equation: for saturated soils the volume of water 
leaving the element per unit volume and unit time is equal 
to the volume decrease per unit volume and unit time, hence

d t / d t  =  d v / d z .  

Inserting Equation 6 in Equation 9 one obtains

d t  d (  d t

d t  d z \  vdz

dvp

dz

(9)

(1 0 )

BOUNDARY CONDITIONS

The object of the analysis below is to find e as a function 
of time and depth. In dimensionless scale e =  /(f ,T ). This 

unknown function must satisfy both the differential equation 
and the boundary conditions at the start and at the end of 
the primary consolidation process.

The starting conditions are

t  =  0 for T  =  0 and 1 >  £ ^  0 (13a)

v =  0 for T  =  0 and £ =  0 (13b)

t  =  es for £ =  1 and °° ^  T  >  0. (13c)

The end conditions, corresponding to t =  oo, are

t  =  t i  for T  =  oo and 1 ^  ^  0 (14a)

v  =  0 for T  =  oo and 1 ^  ^  0. (14b)

In this paper several end strain distribution curves with 

depth will be studied (Fig. lc ) . By introducing ^  for T =  oo 
as follows

11 =  i s « d û  -  f r ) , (15)

it is seen that r =  0 corresponds to a constant ex, such as 
may be the case in an oedometer, while r =  1 and r  =  2 

correspond to a linear and parabolic strain distribution. 
Solutions of the differential equation will be presented for 
these three values of r.

For t =  co, Equations 6 , 14b, and 15 yield

Vo =  (cv/d )(d ii/d £ ) =  (cv / d ) r e d£ r (16)

which is the basic differential equation for one-dimensional 
consolidation on a strain basis.

The classical case, r  =  0, leads to v0 =  0 as would be 

expected. For linear elt when r  =  1, it is seen that v0 =  
constant; and v0 is linear for r  =  2.

Interpreting v0 as being a nominal velocity corresponding 

to a gradient caused by a nominal residual excess pore 
pressure ur after the end of the primary consolidation, the 

distribution of this residual pore pressure for r  >  0 must be 
in principle as shown in Fig. Id.

Because the primary consolidation is connected with the 
straight-line portion of the v — i curve, it is obvious that 
when v =  0 (i.e., i =  t0) a residual velocity and a corre­
sponding residual pore pressure, ur, must exist. The numeri­

cal values of ur will not be considered herein.

SOLUTION O F D IFF E R E N T IA L  EQUATION

The solution of the differential equation is, except for the 
influence of v0, similar to the conventional procedure. 
Therefore the details are omitted.

When is given the form of Equation 15, it is readily
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demonstrated that both the differential equation and the 
boundary conditions are satisfied by the expression

« =  «1 y~l C N  cos N £ e

where

_ i r  3 i r  5 7 r  7  w

2  ’ ~ 2 ~  ’ ~2 ' ~2

r  -  • at o sinr+1iV 
(s n  sin ¿V (17a)

£/
-  I V  / > •

(18)

£ /  = (19)
Uo ~  . f sF(T)

1

in which / s is a “shape factor” referring to the e! distribution,

I s  =  W ( 1  +  ?')es (19a)

and the function F ( T ) is

F ( T )  =  1 -  2(r +  1) E
sin2+riV

~ J ^ e
. (19b)

T
Uo =  F „{T )  

r  = 0

F d T )
r  =  1

FaiT) 
r =  2

0 . 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0 0 . 0 0 0 0

0 . 0 0 1 0.0356 0 . 0 0 2 1 0.0029
0 . 0 0 2 0.0504 0.0041 0.0057
0.005 0.0797 0 . 0 1 0 0 0.0141
0 . 0 1 0.1128 0.0199 0.0276
0 . 0 2 0.1595 0.0399 0.0535
0 .05 0.2523 0.0999 0.1247
0 . 1 0.3568 0.1977 0.2285
0 . 2 0.5040 0.3703 0.3981
0 .5 0.7639 0.6994 0.7129
1 . 0 0.9313 0.9125 0.9164
2 . 0 0.9942 0.9926 0.9929
CO 1 . 0 0 0 0 1 . 0 0 0 0 1 . 0 0 0 0

(17)

The formulas are valid only for the following whole integers, 
r  =  0, r  =  1 , and r  =  2 .

DEGREE OF CONSOLIDATION

The final object of the analysis is to find the degree of 
consolidation U  as a function of the time factor T. By 
definition

Integrating Equations 17 and 15 and inserting for Cv 
according to Equation 17a one finds

T I ME  F A C T OR  , T  —

f i g .  2. Degree of consolidation as function o f time factor for 

different end strain distributions.

Fig. 2 is capable of showing that the rate of consolidation 
increases the more decreases with depth. Since decreases 
with depth even when the additional stress is constant, it is 

evident that the rate of consolidation on the basis of e is 
generally more rapid (particularly for the first phase of the 

consolidation) than that obtained from the conventional 
method (based on additional stress).

PROCEDURE OF APPLICA TIO N

The first step of the analysis for a given case is to obtain 
the e, distribution with depth, and therefrom the settlement 
8C and shape factor f s. The time rate is then estimated from 
tables or graphs in the conventional manner.

Based on a linear tangent modulus, M  =  m<r, the unit 
strain elt at t =  co is calculated for any depth by the 
equation (Janbu, 1963),

The classical degree of consolidation U 0 corresponds to r  — 

0, whereof U 0 =  F 0( T ) .

The functions ¡70, F 1 (T), and F . , ( T ) ,  corresponding to 
r =  0, r  =  1 , and r — 2 respectively, have been calculated by 

means of electronic computers, and the numerical values are 
given in Table I.

T A B L F .  I .  V A L U E S  O F  F (T )

1 . <To' +  P’
— I n -------- r ^ ~
m  <To

and the settlement is by definition

«/ 0

t i d z

(2 0 )

(2 1 )

which is represented by the area of the ex — z  diagram.
Having obtained St. the shape factor f s in Equation 19a is 

found by integrating Equation 15. Hence

5 C =  l  e s 

and therefore,

1 +  r
«d  )  d  — ( 1  —  f s ) ( sd

By means of Equations 19 and 19a and Table I a large 
number of U  — T  curves can be drawn corresponding to a 

similar number of linear and parabolic ^  distributions. For 
illustration purposes three such curves are drawn in Fig. 2, 
corresponding to: Case A: constant tj (classical); case B: 

triangular e,; and case C: parabolic with zero strain at the 
impervious base (real or fictitious).

/s  =  1 -  5c/ e sd. (2 2 )

In Equation 22 the value to be used for Se is the area of ej — 
z  as defined by Equation 21.

Equation 22 is valid only up to the maximum / s corre­
sponding to e(1 =  es when, according to Equation 19a,

/smax =  r / { \  +  r ) .  (23)

When the end strain for all practical purposes approaches 
zero for a depth smaller than the actual layer thickness, the 
effective length, d 0, of the drainage path is smaller than the 
layer thickness itself. In such cases the effective drainage 
path, is determined by substituting Equation 23 in 
Equation 22 and using d Q instead of d. Then

d c — (1 +  r )S c /e (24)
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It is important to notice that d c (and not d )  should be Stress, Vm2

used in calculating the time
24 - r  C

10

t  =  T (d l/C y ) .  (25)
h j

^  '6 '

Equations 24 and 25 must now be applied together with / / > <  PI

the maximum shape factor, Equation 23, i.e., curves B and C X /
I— /

y

in Fig. 2 are directly applicable for r =  1 and r =  2 CL / 
LlI / /

respectively. /

E X A M P L E S /  12.7 »-14

St rai n , °A> 

5

H:
10

Strip fo o t in g  

(B = 2m , L = 20m )

Stress 4  cm de m fs,max

Elast.

P last.

25.8 9.15 0.67

25.4 6.10 0.50

The first example deals with the time rate of consolidation 
for a fill of large horizontal extensions placed on a drainage 
blanket of sand on top of a 10-m-thick, normally consoli­
dated clay layer resting on an impervious base. The required 
data are presented in the profiles in Fig. 3.

L AR GE F I L L  q - 1 2 V£ , 2  _  t  /
Stress, /  rn2  Strain,%

m
S À N D ¡t-ÌÈ

-255

iT - t0 ^ 3

m-20

w-38%

c,-4ra/ '
* '  year

_ E 1 4

r

/  7 .7 c

i .
TJ

j  1 0 2 T

/  12 .7 12 ,

a48 £%

5.99 /

/AREA:
4.70 ! Sc=5Q5cm

3l89 /

Time in years -

f f l:

Sq uare f o o t in g  

( B  = 2.0 m )

Stress
4 cm de m f s,max

Elast.

P last.

16.2 5.75 0.67

16.8 4.00 0.50

Time i n years

f i g . 3. Example I. Tim e rate o t  consolidation for a  large fill, 

estimated on strain and stress basis.

The area of the — z  diagram equals Sc =  50.5 cm and 
€s =  0.0848 while d  — 10 m giving f s =  0.405. Using this 
shape factor in Equation 19 and applying U 0 and F(T ) =  
F2(T) from Table I, a U  — T  curve is obtained. The rest of 
the analysis is the same as in the conventional approach, and 
the numerical S — t diagram is shown in Fig. 3. For com­

parison the S — t curve, interpreted on additional stress basis 
by the conventional method, is included in Fig. 3.

Even though both curves in Fig. 3 deal with an idealized 
case of no lateral yield, constant additional stress, and 
vertical drainage, it is seen that eJ decreases with depth due 

to the influence of effective overburden on the compressi­
bility, and as a consequence the consolidation takes place 

more rapidly than it would in a solution obtained on the 
basis of constant additional stress.

For concentrated loads (i.e., strip footings) on clay, 
lateral yield may take place, and the drainage path is not 
generally vertical in the zone of consolidation. Lateral yield 
must in practice be treated separately, and even though the 
drainage path, in average, deviates from the vertical, the 

above-presented procedure can be adopted to such cases, at 
least for practical purposes.

In Fig. 4 the time rates of consolidation for a strip footing 
and a square footing are analysed for the same soil profile 
as in example I. The stress distributions with depth are

f i g . 4. Examples II and III. Tim e rate o f consolidation for 

a strip and square footing.

calculated from both the theory of elasticity and the theory 
of plasticity (unpublished report). The required data are 
given in Fig. 4. The time is now estimated from Equation 25 

using the calculated d,. and obtaining T  — U  from curves C 
and B in Fig. 2 for elastic (r =  2) and plastic (r —  1) dis­
tribution, respectively. The results are shown in Fig. 4.

As will be noted, the difference in settlement between 
elastic and plastic stress distribution is insignificant. How­
ever, the plastic distribution appears to lead to faster con­
solidation particularly in the last half of the process. As 
would be expected the square footing settles considerably 
less (65 per cent) and more rapidly than the strip footing, 
and as a consequence the differential settlement between two 
such footings may tend to develop in an unfavourable way 
as time passes.

Since the three examples dealt with consider the same soil 

profile and unit load, some values for comparison are 
assembled in Table II.

T A B L E  II.  S U M M A R Y  O F  D A T A  F R O M  E X A M P L E S  I, I I ,  A N D  I I I  ( F O R  

T H E  S A M E  S O I L  P R O F I L E )

Example äc (cm)

Tim e of 50 per cent consolidation

Strain basis Stress basis

I. Extensive fill 50 .5 3 . 2  years 5 . 0  years
II. Strip footing 2 5 .6 ca. 0 .9  years No suitable

III. Square footing 16.5 ca. 0 .4  years procedure available

D I S C U S S I O N

In the numerical analysis presented herein, it is assumed 
that c Y =  constant, and moreover the U  — T  curves are
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obtained for v0 =  f ( z )  only. In reality the problem is com­
plicated by the fact that cv is not constant and v0 may also 

be a function of time and stress.
For some Norwegian marine clays it has been found that 

cT increases for increasing stresses above the preconsolida­
tion load, in approximately the following manner

cv =  cvo(<r7<roT (26)

where the pure number a  is of the order of magnitude of 
0.4 to 0.6.

Substituting for k from ywcv =  k M  into Equation 8 and 
using M  =  m < /  the differential equation 10 takes the form

§ 1  _  J L  I  I I i £ v  . .

dt d z  \  d z )  a' dz

where

7 r =  (1 — a ) ( y v i 0 +  7q)- (28)

Equation 27 is so complicated to solve, however, that only 
one solution (for a special case) has so far been obtained, 

but not evaluated (Mortensen, 1962).
The analysis (for primary consolidation) was concerned 

with the straight-line portion of the v — i curve, Fig. 1. For 
small gradients the velocity varies in a non-linear way, say 
v =  C i2. In the last phase of the consolidation process, the 
velocity represented by the shaded area in Fig. 1 will lead 

to a settlement in addition to the calculated Sc for linear v.

This additional settlement will in principle be similar to a 
secondary consolidation. Moreover, if the load increment is 

small so that the gradient at time t =  0 is less than about
2 z0, this phenomenon will start at the very beginning (i =  
0 ) indicating that the secondary consolidation may be dis­
tributed over the entire consolidation process (Leonards and 
Girault, 1961).

The nominal velocity v0, Equation 16, is indicative of a 

residual pore pressure at the end of the primary consolidation 
( i =  i0). Attempts have been made to establish mathematical 
formulae for the distribution and magnitude of this residual 

pore pressure. Because of uncertainties about the correct 
boundary conditions, however, this analysis is not yet 
completed.
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