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Comparison between the Calculated and Experimental
Values of the Ultimate Bearing Capacity

Comparaison entre les valeurs calculées et expérimentales de la capacité portante

D. M. MILOVIé, DR. TECH., Material Testing Institute of SR of Serbia, Yugoslavia

SUMMARY

This paper presents field test results carried out by the author
on cohesive soils and by Muhs (1959, 1961) on poorly cohesive
materials. The dimensions of the rectangular foundations were
A by B = 2.0 by 0.5 m and of square foundations 4 = 1.0 m
and A = 0.71 m. The results of the ultimate bearing capacity,
obtained by the field tests, are compared with the calculated
values of several authors. For non-cohesive materials the results
obtained by Balla’s theory agree well with the experimental
values. However, for cohesive materials the most reliable results
are given by the Brinch Hansen theory.

SOMMAIRE

Cet article donne les résultats des essais en chantier effectués
par l'auteur sur des sols cohérents et par Muhs (1959, 1961) sur
des sols faiblement cohérents. Les dimensions des fondations rec-
tangulaires étaient 4 par B = 2,0 par 0,5 m et de celles carées
A =1,0met A = 0,71 m. Les résultats de la capacité portante
sont comparés avec les valeurs calculées de plusieurs auteurs.
Pour les sols non-cohérents, les résultats obtenus selon la théorie
de Balla sont conformes aux valeurs expérimentales. Cependant
pour les sols cohérents, la méthode de Brinch Hansen donne des
solutions plus exactes.

MOST THEORIES dealing with the problem of the ultimate
bearing capacity assume approximate sliding surfaces which
usually are kinematically impossible. Because of different
assumptions, the values obtained differ considerably from
one another. The foundation depth and the bearing capacity
factor, N, are of particular importance.

The loading tests in the field were made on foundations of
relatively large dimensions. The ultimate bearing capacity
values obtained in this way were compared with those
obtained theoretically.

THE GENERAL BEARING CAPACITY EQUATIONS
K. Terzaghi (1943) proposed the following formula for
the bearing capacity of a centrally and vertically loaded strip
foundation:

g: = cN,+ vyDN, + 0.5vBN, (1)

where ¢ = cohesion, D; = depth of the foundation, B =
width of the foundation, y = unit weight of the soil, and
N, N, N, = bearing capacity factors. Brinch Hansen
(Brinch Hansen, 1952; Brinch Hansen and Lundgren, 1960)
has extended this equation by introducing shape factor, s,
depth factor, d, and inclination factor, i:

gt = cNosdd, + vD (N5, + 0.5vBN, s, dog,. (2)

According to Prandtl (1920) N, and N, factors may be
calculated by considering the theoretical case of weightless
earth (v = 0):

N, = ed™ tan®*(ua/4 + ¢/2) (3)
N, = (N, — 1) cot ¢. 4)

Since the shape of the rupture surface, which is both kine-
matically and statically possible, is not yet known, Brinch
Hansen recommends the following expression for the coeffi-
cient N,

N, ~ 1.80(N, — 1) tan ¢. (5)
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According to Brinch Hansen, the following formulae for
the depth and shape factors are:

d.>~1+4035/[B/D, 4 0.60/(1 + 7 tan‘y)] (6)

dﬂl =d, — (dc - 1)/N41 (7)

s =1+ (0.20 + tanSp)B/A (8)
where A4 is the length of the rectangular foundation.

S¢ = S — (55_1)/Nq 9)

sy>~1 — 3(0.20 + tan®p)B/A. (10)

Balla (1962) considered the figure of failure that would

satisfy both the static and kinematic conditions. Applying

Kétter’s equation in considering the equilibrium of the

infinitesimal part, Balla gives the following general equation
for the ultimate bearing capacity:

gt = C(tang 4+ pFs) + vD(1 + pFs)
+ 0.5vBp(pFy + F; tan o)

where the coefficients F' are only functions of the angle of
internal friction y, while the parameter p is the function of
the angle yp, and of the dimensionless relationships D;/(B/2)
and C/(B/2 X v). In other words, the bearing capacity
factors do not depend only on the angle ¢ but also on the
values D¢, B, C, and +.

(11)

LOADING TESTS RESULTS

Muhs (1959; 1961) carried out loading tests of poorly
cohesive soils with a square foundation of the size of 4 = B
= 1.0 m and with rectangular foundations of the dimensions
A by B = 2.0 by 0.5 m. The results of these tests are given
in Fig. 1.

Applying the above-mentioned methods, the calculation of
the ultimate bearing capacity has been made for all four



20

o /0 s e T
A s & est U
. =1 \ 7
s 1= S . T B-050m
£ 5 B 1 T - — A-200m
2 B v
SO e s .
E M & =37
O \ f 5
E 15— L 27N\ o <065 t/mt
@ \ ke | 0 ¢ /3
= \ —a | 60 ¢ 7
< \ =105 | °
)} 20 ¥—— 4 1
3‘] 20 _t_ N vO
| \
25 —— ﬁ—0—4—1— <‘—-— g P == -
30 | - l l | 1 | |
(a)
vertical (oad, G(kgrcm?)
0 5 10 15
= = r .
o~ .(‘ — -l ; -+ l
:t- 1— \ A 7
= =025

\-‘ ;‘; -
\\ y
4 IV L 1 Dp=050m

TABLLE I. CALCULATION OF ULTIMATE BIEARING CAPACITY

Ultimate
Foundation bearing
Test depth capacity
number D¢ (m) Method gr(kg/sq.cm.)
Terzaghi 7.62
Meyerhof 6.68
I 0 Caquot and Kérisel 5.79
Brinch Hansen 6.23
Balla 10.34
Muhs 10.80
Terzaghi 7.80
Meyerho! 16.84
1 0.50 Caquot and Kérisel 7.18
Brinch Hansen 8.80
Balla 14.11
Muhs 12.0
Terzaghi 15.23
Meyerhof 34.86
IT1 0.50 Caquot and Kérisel 13.70
Brinch Hansen 17.53
Balla 25.18
Muhs 24 20
Terzaghi 18.55
Meyerhof 46.96
v 0.50 Caquot and Kérisel 14.47
Brinch Hansen 22.52
Balla 32.50
Mubhs 33.0

TABLE II. THEORETICAL AND EXPLERIMENTAL VALUES OF

ULTIMATLE BLEARING CAPACITY
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FIG. 1. Loading tests on poorly cohesive soils: (a) Test I,
(b) Test I, (¢) Test III, (d) Test IV.

cases. The results thus obtained are shown in Table I. Com-
paring the theoretical and experimental results one may
conclude that the values calculated to Balla’s theory are in
good agreement with the experiments. In the cases where
the foundation depth was greater than zero the values
obtained by the Meyerhof method are considerably higher
than the results of the loading tests.

The author has carried out loading tests on cohesive
materials with square foundations of the size of 4 = B =

Ultimate
Foundation bearing
Test depth capacity
number D¢ (m) Method gi(kg/sq.cm.)
Terzaghi 4.47
Meyerhof 6.58
\% 0.40 Caquot and Kérisel 3.03
Balla 6.74
Brinch Hansen 3.98
Milovié 4.1
Terzaghi 5.77
Meyerhol 8.84
VI 0.50 Caquot and Kérisel 4.08
Balla 10.18
Brinch Hansen 5.74
Milovié 5.50
Terzaghi 2.51
Meyerhof 2.51
VII 0 Caquot and Kérisel 1.65
Balla 2.93
Brinch Hansen 1.98
Milovié¢ 2.20
Terzaghi 2.90
Meyerho! 4.10
VIII 0.30 Caquot and Kérisel 2.00
Balla 4.40
Brinch Hansen 2.57
Milovié 2.70

0.71 m. The results of these tests are shown in Fig. 2.
Table II shows the theoretical and experimental values of
the ultimate bearing capacity.

Comparing the results of loading tests in cohesive materials
with the calculated values, it can be seen that the most
reliable results are obtained by Brinch Hansen’s and Ter-
zaghi’s methods. Meyerhof’s method gives values which are
too high in cases where the foundation depth is greater than
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FIG. 2. Loading tests on cohesive soils: (a) Test V, (b) Test VI, (¢) Test VII, (d) Test VIIL

zero. The results obtained by Balla’s theory are also con-
siderably higher than the experimental values.

CONCLUSIONS

In cases of non-cohesive and poorly cohesive materials
the results of the ultimate bearing capacity obtained by
Balla’s theory are in good agreement with the experimental
values. By Meyerhof’s theory, considerably higher values
were obtained in cases where the foundation depth was
greater than zero.

For cohesive materials, Brinch Hansen’s theory gives
values that approach closely the results obtained by the
loading tests. The values calculated by Meyerhof’s method in
cases where the foundation depth was greater than zero
exceed the experimental values. The values obtained by
Balla’s method are also considerably higher than the results
from loading tests.
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